Поскольку отрезок DE (параллельный плоскости альфа) лежит в плоскости треугольника АВС, а плоскость треугольника АВС пересекает плоскость альфа по прямой ВС, значит, линия пересечения плоскостей (линия ВС) параллельна DE. Т.е. DE и ВС параллельны. Отсюда следует, что треугольники АВС и АДЕ – подобны, т.к. отрезок, параллельный стороне треугольника, отсекает треугольник подобный данному. АВ = АД + ДВ = 9 + 2 = 11 условных единиц. Из подобия указанных треугольников можно записать ВС/ДЕ = АВ/АД. Отсюда ВС= АВ*ДЕ/АД = 11*7/9 =77/9 см.
Проведем высоту ромба АН.М - точка пересечения этой высоты с диагональю DB. <АМВ=<KDB (как соответственные при параллельных прямых КD и АН и секущей DB. <AMB=<DMH как вертикальные. Следовательно, нам надо найти синус угла DMH в прямоугольном треугольнике DHM. Диагональ ромба делит его углы пополам. Пусть <MDH=α. Тогда острый угол ромба равен 2α. Нам дано, что Sin2α=0,6. Sin2α=2SinαCosα. SinαCosα=0,3. Sin²αCos²α=0,09. Cos²α=1-Sin²α. Sin²α(1-Sin²α)=0,09. Пусть Sin²α=Х. Тогда Х²-Х+0,09=0. Находим корни этого квадратного уравнения: D=√(1-4*0,09)=0,8 Х1=(1+0,8)/2=0,9. Х2=(1-0,8)/2=0,1. Итак,имеем два корня: Sin²α=0,9 и Sin²α=0,1. Тогда 1)Sinα=√0,9 ≈ 0,949; 2)Sinα=√0,1 ≈ 0,316. Вспомним, что за угол α мы приняли ПОЛОВИНУ острого угла ромба. Значит первый корень нам не подходит, так как arcsin(0,949) ≈ 71°. Итак, нас удовлетворяет ответ Sinα=√0,1. В прямоугольном треугольнике DMH: Sinα=МH/DМ=Cosβ. Значит Cosβ=Sinα=√0,1. Тогда Sinβ=√(1-Cosβ²)=√0,9 ответ: Sinβ=0,9.
Поскольку отрезок DE (параллельный плоскости альфа) лежит в плоскости треугольника АВС, а плоскость треугольника АВС пересекает плоскость альфа по прямой ВС, значит, линия пересечения плоскостей (линия ВС) параллельна DE. Т.е. DE и ВС параллельны. Отсюда следует, что треугольники АВС и АДЕ – подобны, т.к. отрезок, параллельный стороне треугольника, отсекает треугольник подобный данному. АВ = АД + ДВ = 9 + 2 = 11 условных единиц. Из подобия указанных треугольников можно записать ВС/ДЕ = АВ/АД. Отсюда ВС= АВ*ДЕ/АД = 11*7/9 =77/9 см.
<АМВ=<KDB (как соответственные при параллельных прямых КD и АН и секущей DB.
<AMB=<DMH как вертикальные.
Следовательно, нам надо найти синус угла DMH в прямоугольном треугольнике DHM.
Диагональ ромба делит его углы пополам. Пусть <MDH=α. Тогда острый угол ромба равен 2α. Нам дано, что Sin2α=0,6.
Sin2α=2SinαCosα. SinαCosα=0,3. Sin²αCos²α=0,09.
Cos²α=1-Sin²α. Sin²α(1-Sin²α)=0,09. Пусть Sin²α=Х. Тогда
Х²-Х+0,09=0. Находим корни этого квадратного уравнения:
D=√(1-4*0,09)=0,8 Х1=(1+0,8)/2=0,9. Х2=(1-0,8)/2=0,1.
Итак,имеем два корня: Sin²α=0,9 и Sin²α=0,1.
Тогда 1)Sinα=√0,9 ≈ 0,949; 2)Sinα=√0,1 ≈ 0,316.
Вспомним, что за угол α мы приняли ПОЛОВИНУ острого угла
ромба.
Значит первый корень нам не подходит, так как arcsin(0,949) ≈ 71°.
Итак, нас удовлетворяет ответ Sinα=√0,1.
В прямоугольном треугольнике DMH: Sinα=МH/DМ=Cosβ.
Значит Cosβ=Sinα=√0,1. Тогда Sinβ=√(1-Cosβ²)=√0,9
ответ: Sinβ=0,9.