Висота, проведена з вершини тупого кута прямокутної трапеції ділить трапецію на квадрат і трикутник. площа трикутника дорівнює 16 см квадратних знайдіть площу трапеції якщо її гострий кут дорівнює 45°. Если можно напишите на листочке
)по чертежу думаю все понятно там тэтрайдер. 1 расматриваем аов по теореме пифагора находим ов=10. 2 в треугольнике овс он равнобедренный проводим высоту он она попадает на середину вс. находим он по теореме пифагора он=корень под ним 100-9 =корень из 91. находим площадь треугольника 1/2*св*он=3корня из 91. находим периметр 10+10+6=26 2 находим ов=а корей из 2. находим он = 2а2-а2/4=а корней из 7 делить на 2. площадь а2 корней из 7 делить на 4 а периметр =а(1+2 корня из 2)
Пусть сторона квадрата до увеличения - х, тогда после увеличения на 20% - 1,2х. Пусть площадь квадрата до увеличения - S, тогда после увеличения - S+11. Можно составить систему уравнений: х²=S (1,2x)²=S+11
х²=S 1,44x²=S+11
Вычтем из второго уравнения первое: 1,44x²-х²=S+11-S 0,44x²=11 x²=11/0,44=25 x1=-5 - не подходит по условию задачи, так как сторона квадрата не может быть отрицательной величиной х2=5 (дм) Итак, сторона квадрата до увеличения равна 5 дм. Площадь квадрата до увеличения равна S=x²=5²=25 (дм²)
Можно составить систему уравнений:
х²=S
(1,2x)²=S+11
х²=S
1,44x²=S+11
Вычтем из второго уравнения первое:
1,44x²-х²=S+11-S
0,44x²=11
x²=11/0,44=25
x1=-5 - не подходит по условию задачи, так как сторона квадрата не может быть отрицательной величиной
х2=5 (дм)
Итак, сторона квадрата до увеличения равна 5 дм.
Площадь квадрата до увеличения равна S=x²=5²=25 (дм²)