Дано:треугольник АВС
<С=42 градуса
Внешний угол,смежный с <А=68 градусов
—————————————————————
Найти :<А,<В,внешний угол смежный с углом В
Решение
Внешний угол 68 градусов и смежный ему внутренний угол А в сумме равны 180 градусов
<А=180-68=112 градусов
<В=180-(42+112)=180-154=26 градусов
Проверка 42+112+26=180 градусов
Осталось найти внешний угол смежный внутреннему углу В.Сумма внешнего и внутреннего смежных углов равна 180 градусов
180-26=154 градуса
Проверка сумма внутренних углов не смежных внешнему углу равна градусной мере внешнего не смежного им угла
42+112=154 градуса
Объяснение:
81√3 ед²
Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°, КР⊥РТ; КТ=12√3. Найти S(КМРТ).
Рассмотрим ΔКРТ - прямоугольный; ∠РКТ=90-60=30°, значит, РТ=0,5КТ=6√3 по свойству катета, лежащего против угла 30 градусов.
Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;
∠ТРН=90-60=30°, значит, ТН=0,5РТ=3√3.
Найдем РН по теореме Пифагора:
РН²=РТ²-ТН²=108-27=81; РН=9.
Найдем МР. ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР; ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=6√3.
S(КМРТ)=(МР+КТ)/2 * РН = (6√3+12√3)/2 * 9=(9√3)*9=81√3 ед²
Дано:треугольник АВС
<С=42 градуса
Внешний угол,смежный с <А=68 градусов
—————————————————————
Найти :<А,<В,внешний угол смежный с углом В
Решение
Внешний угол 68 градусов и смежный ему внутренний угол А в сумме равны 180 градусов
<А=180-68=112 градусов
<В=180-(42+112)=180-154=26 градусов
Проверка 42+112+26=180 градусов
Осталось найти внешний угол смежный внутреннему углу В.Сумма внешнего и внутреннего смежных углов равна 180 градусов
180-26=154 градуса
Проверка сумма внутренних углов не смежных внешнему углу равна градусной мере внешнего не смежного им угла
42+112=154 градуса
Объяснение:
81√3 ед²
Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°, КР⊥РТ; КТ=12√3. Найти S(КМРТ).
Рассмотрим ΔКРТ - прямоугольный; ∠РКТ=90-60=30°, значит, РТ=0,5КТ=6√3 по свойству катета, лежащего против угла 30 градусов.
Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;
∠ТРН=90-60=30°, значит, ТН=0,5РТ=3√3.
Найдем РН по теореме Пифагора:
РН²=РТ²-ТН²=108-27=81; РН=9.
Найдем МР. ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР; ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=6√3.
S(КМРТ)=(МР+КТ)/2 * РН = (6√3+12√3)/2 * 9=(9√3)*9=81√3 ед²