Площадь полной поверхности призмы - это сумма площадей двух оснований (ромбов) и четырех боковых граней (прямоугольников со сторонами, равными высоте и стороне основания призмы). В ромбе диагонали взаимно перпендикулярны и делятся точкой пересечения пополам. => Сторона основания (ромба) по Пифагору равна
а = √((D/2)²+(d/2)²) или а = √(4²+3²) = 5см.
Площадь боковой грани равна Sг= 5*10 = 50см²
Площадь основания равна (1/2)*D*d = 6*8/2=24см².
Площадь полной поверхности призмы равна S=2*24+4*50 = 248 см²
Площадь полной поверхности призмы - это сумма площадей двух оснований (ромбов) и четырех боковых граней (прямоугольников со сторонами, равными высоте и стороне основания призмы). В ромбе диагонали взаимно перпендикулярны и делятся точкой пересечения пополам. => Сторона основания (ромба) по Пифагору равна
а = √((D/2)²+(d/2)²) или а = √(4²+3²) = 5см.
Площадь боковой грани равна Sг= 5*10 = 50см²
Площадь основания равна (1/2)*D*d = 6*8/2=24см².
Площадь полной поверхности призмы равна S=2*24+4*50 = 248 см²
ответ: S=248 см²
Теорема - это высказывание, истинность которого необходимо доказать.
В теореме можно выделить 3 части:
1) преамбула. В ней описываются множества, относительно которых задана теорема. Это области определения высказывания А и высказывания В.
2) условия теоремы. Это предложение А или то что дано в теореме.
3) заключение теоремы. Это предложение В или то что нужно доказать в теореме.
Различают 4 вида теорем:
1. Данная теорема. Например: вертикальные углы равны. Если углы вертикальные, то они равны.
2. Теорема обратная данной. Например: если углы равны, то они вертикальные (данная теорема - ложна).
3. Теорема противоположная данной - Если углы не вертикальные, то они не равны (данная теорема ложна).
4. Теорема противоположная обратной - Если углы не равны, то они не вертикальные. (Истинная теорема)