Сума величин кутів трикутника АОВ, що створюють діагоналі та одна сторона прямокутника завжди дорівнює 180 градуса, тобто:АВО+ВОА+ОАВ=180Гр.А і В є вершинами протилежних кутів пряокутника, що прилягають до однієї сторони. Отже у прямокутнику дані кути будуть однакові, тобто величина кута АВО=величині кута ВАО=30градусам. Звідси 180-30-30=120градусів -величина кута АОВ, що є кутом між діагоналяи прямокутника.
ДОДАТКОВО:Отже ми маємо два протилежні кути по 120гр. Сума величини кутів прямокутника становить 360 гр.Причому величини протележних кутів однакові. Маємо 360-120-120=120. 120/2=60. маємо кути: АОВ=СОД=120гр. ВОС=ДОА=60гр.
Равнобедренного может? Если да , то вот . В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
Сума величин кутів трикутника АОВ, що створюють діагоналі та одна сторона прямокутника завжди дорівнює 180 градуса, тобто:АВО+ВОА+ОАВ=180Гр.А і В є вершинами протилежних кутів пряокутника, що прилягають до однієї сторони. Отже у прямокутнику дані кути будуть однакові, тобто величина кута АВО=величині кута ВАО=30градусам. Звідси 180-30-30=120градусів -величина кута АОВ, що є кутом між діагоналяи прямокутника.
ДОДАТКОВО:Отже ми маємо два протилежні кути по 120гр. Сума величини кутів прямокутника становить 360 гр.Причому величини протележних кутів однакові. Маємо 360-120-120=120. 120/2=60. маємо кути: АОВ=СОД=120гр. ВОС=ДОА=60гр.
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.