В условии сказано, что размер одной клетки 1 х 1, но при этом не сказано, чего (миллиметров, сантиметров, метров и т.д.). Поэтому и ответ надо дать в виде безразмерной величины.
ответ: 4.
№ 2.
Рассчитаем расстояния между точками.
Согласно теореме Пифагора:
АС = √(1² + 2²) = √5, где 1 и 2 - количество клеток по горизонтали и по вертикали.
АВ = √(2² + 1²) = √5, где 2 и 1 - количество клеток по горизонтали и по вертикали.
ВС = √(1² + 3²) = √10, где 1 и 3 - количество клеток по горизонтали и по вертикали.
Так как АС = АВ = √5, то треугольник АВС - равнобедренный.
А т.к. ВС² = АС² + АВ² = √((√5)² +(√5)²) = √10, то треугольник АВС - прямоугольный.
В равнобедренном треугольнике углы при основании равны.
Две прямые, параллельные третьей, параллельны. Доказательство.
Пусть прямые a и b параллельны прямой с. Допустим, что прямые a и b не параллельны. Тогда они пересекаются в некоторой точке С. Получается, что через точку С проходит две прямые параллельные прямой с. Но это противоречит аксиоме «Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной» . Теорема доказана.
Теорема
Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны. Доказательство.
Пусть есть параллельные прямые a и b, которые пересекаются секущей прямой с. Прямая с пересекает прямую а в точке A и прямую b в точке B. Проведем чрез точку A прямую a1 так, что бы прямые a1 и b с секущей с образовали равные внутренние накрест лежащие углы. По признаку параллельности прямых прямые a1 и b параллельны. А так как через точку A можно провести только одну прямую параллельную b, то a и a1 совпадают. Значит, внутренние накрест лежащие углы, образованные прямой a и b, равны. Теорема доказана.
На основании теоремы доказывается:
Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.
Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180 º
См. Объяснение
Объяснение:
№ 1.
Считаем количество клеток до линии ВС - 4 клетки.
В условии сказано, что размер одной клетки 1 х 1, но при этом не сказано, чего (миллиметров, сантиметров, метров и т.д.). Поэтому и ответ надо дать в виде безразмерной величины.
ответ: 4.
№ 2.
Рассчитаем расстояния между точками.
Согласно теореме Пифагора:
АС = √(1² + 2²) = √5, где 1 и 2 - количество клеток по горизонтали и по вертикали.
АВ = √(2² + 1²) = √5, где 2 и 1 - количество клеток по горизонтали и по вертикали.
ВС = √(1² + 3²) = √10, где 1 и 3 - количество клеток по горизонтали и по вертикали.
Так как АС = АВ = √5, то треугольник АВС - равнобедренный.
А т.к. ВС² = АС² + АВ² = √((√5)² +(√5)²) = √10, то треугольник АВС - прямоугольный.
В равнобедренном треугольнике углы при основании равны.
Следовательно, угол АВС равен углу АСВ и равен:
∠АВС = (180°-90°) : 2 = 45°
ответ: ∠АВС = 45°
Теорема
Две прямые, параллельные третьей, параллельны.
Доказательство.
Пусть прямые a и b параллельны прямой с. Допустим, что прямые a и b не параллельны. Тогда они пересекаются в некоторой точке С. Получается, что через точку С проходит две прямые параллельные прямой с. Но это противоречит аксиоме «Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной» . Теорема доказана.
Теорема
Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.
Доказательство.
Пусть есть параллельные прямые a и b, которые пересекаются секущей прямой с. Прямая с пересекает прямую а в точке A и прямую b в точке B. Проведем чрез точку A прямую a1 так, что бы прямые a1 и b с секущей с образовали равные внутренние накрест лежащие углы. По признаку параллельности прямых прямые a1 и b параллельны. А так как через точку A можно провести только одну прямую параллельную b, то a и a1 совпадают.
Значит, внутренние накрест лежащие углы, образованные прямой a и b, равны. Теорема доказана.
На основании теоремы доказывается:
Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.
Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180 º