Площадь правильного треугольника находят по формуле:S=1/2*a*h, где а - это основание, а h -высота, опущенная на основание
У нас известна а , т.к. все стороны правильного треугольника равны⇒ а=6 см.
Найти высоту можно по формуле Пифагора.
Так, высота в равностороннем треугольнике (правильный треугольник - это равносторонний треугольник) является также биссектрисой и медианой.
Как медиана, она делит сторону, на которую опущена, пополам. Проведя высоту получаем прямоугольный треугольник, один из катетов которого есть высотой правильного треугольника, а второй из катетов равен половине стороны: 6:2=3 (см).
Находим ее (высоты правильного треугольника) значение : 6²+3²=36+9=45, √45=√9*5=3√5 (см),
тогда площадь правильного треугольника равна: 1/2*6*3√5=9√5 (см)
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Площадь правильного треугольника находят по формуле:S=1/2*a*h, где а - это основание, а h -высота, опущенная на основание
У нас известна а , т.к. все стороны правильного треугольника равны⇒ а=6 см.
Найти высоту можно по формуле Пифагора.
Так, высота в равностороннем треугольнике (правильный треугольник - это равносторонний треугольник) является также биссектрисой и медианой.
Как медиана, она делит сторону, на которую опущена, пополам. Проведя высоту получаем прямоугольный треугольник, один из катетов которого есть высотой правильного треугольника, а второй из катетов равен половине стороны: 6:2=3 (см).
Находим ее (высоты правильного треугольника) значение : 6²+3²=36+9=45, √45=√9*5=3√5 (см),
тогда площадь правильного треугольника равна: 1/2*6*3√5=9√5 (см)
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.