Дан ΔАВС. Периметр Р(АВС)=14 см. Продолжим сторону АС треугольника АВС за точки А и С , получим прямую ДЕ. Проведём биссектрису АК угла ВАД, а также биссектрису СМ угла ВСЕ. ВК⊥АК и ВМ⊥СМ Продолжим высоты ВК и ВМ до пересечения с ДЕ. На ДЕ получим точки Д и Е. Так как АК и СМ - биссектрисы и высоты одновременно в ΔАВД и ΔВСЕ, то эти треугольники равнобедренные ⇒ АВ=АД и ВС=СЕ. Высоты АК и СМ в равнобедренных треугольниках АВД и ВСЕ являются ещё и медианами , значит точка К - середина ВД, а точка М - середина ВЕ. Рассм. ΔВЕД: КМ - средняя линия ΔВЕД. ДЕ=ДА+АС+СЕ=АВ+АС+ВС=Р(АВС)=14 см Средняя линия треугольника равна половине стороны, параллельно которой она проходит, то есть КМ=1/2*ДЕ=1/2*14=7 см.
1) Сумма всех четырёх углов, которые образуются при пересечении двух прямых = 360°, причём противолежащие друг другу углы равны. 360° - 325° = 35° - это четвёртый угол. Вертикальный (противоположный) ему угол входит в сумму трёх углов и = 35° 2) (325 - 35) = 290°- сумма двух равных больших углов 3) 290° : 2 = 145° ответ: 145° - величина большего угла.
Продолжим сторону АС треугольника АВС за точки А и С ,
получим прямую ДЕ.
Проведём биссектрису АК угла ВАД, а также биссектрису СМ угла ВСЕ.
ВК⊥АК и ВМ⊥СМ
Продолжим высоты ВК и ВМ до пересечения с ДЕ. На ДЕ получим
точки Д и Е.
Так как АК и СМ - биссектрисы и высоты одновременно в ΔАВД и ΔВСЕ, то эти треугольники равнобедренные ⇒
АВ=АД и ВС=СЕ.
Высоты АК и СМ в равнобедренных треугольниках АВД и ВСЕ являются ещё и медианами , значит точка К - середина ВД, а точка М - середина ВЕ.
Рассм. ΔВЕД: КМ - средняя линия ΔВЕД.
ДЕ=ДА+АС+СЕ=АВ+АС+ВС=Р(АВС)=14 см
Средняя линия треугольника равна половине стороны, параллельно которой она проходит, то есть
КМ=1/2*ДЕ=1/2*14=7 см.
360° - 325° = 35° - это четвёртый угол. Вертикальный (противоположный) ему угол входит в сумму трёх углов и = 35°
2) (325 - 35) = 290°- сумма двух равных больших углов
3) 290° : 2 = 145°
ответ: 145° - величина большего угла.
Чертёж:
\ ∠4 = ∠2 (как вертикальные)
\ ∠1 = ∠3 (как вертикальные
4_\_1 ∠1 +∠2 + ∠3 = 325°
3 \ 2
\
\