Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
Для начала заметим, что AO = DO = CO = BO - это радиусы окружности.
Далее, угол AOD = угол COB - вертикальные.
Треугольник AOD = треугольнику COB (так как AO = OC, OD = OB и угол AOD = углу COB(первый признак равенства треугольников)), отсюда AD = BC = 2 см.
К тому же треугольники AOD и COB - равнобедренные, значит
угол OAD = угол ADO = угол OCB = угол OBC
Рассмотрим угол DAO = угол OBC - они накрест-лежащие и равны, значит AD параллельна CB
в) если угол AOD = 60 градусов, а мы выяснили, что треугольник AOD - равнобедренный то угол OAD = (180-60)/2 = 60 =угол ADO, следовательно треугольник ADO - равносторонний и AD = AO = OD, поэтому AO = AD = 2, но AO - радиус, значит диаметр равен AB = AO*2 = 2см*2=4 см
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
1) 2см
2) верно
3) 4см
Объяснение:
Для начала заметим, что AO = DO = CO = BO - это радиусы окружности.
Далее, угол AOD = угол COB - вертикальные.
Треугольник AOD = треугольнику COB (так как AO = OC, OD = OB и угол AOD = углу COB(первый признак равенства треугольников)), отсюда AD = BC = 2 см.
К тому же треугольники AOD и COB - равнобедренные, значит
угол OAD = угол ADO = угол OCB = угол OBC
Рассмотрим угол DAO = угол OBC - они накрест-лежащие и равны, значит AD параллельна CB
в) если угол AOD = 60 градусов, а мы выяснили, что треугольник AOD - равнобедренный то угол OAD = (180-60)/2 = 60 =угол ADO, следовательно треугольник ADO - равносторонний и AD = AO = OD, поэтому AO = AD = 2, но AO - радиус, значит диаметр равен AB = AO*2 = 2см*2=4 см