визначити всі можливі прслідовності розв'язування прямокутного трикутника ABC(кутC=90) за даними катетами a.b a)обчислити tg A=a/b n=та за таблицею знайти кут A б)знайти кут B: кут B=90-кут А в)знайти гіпотенузу AB:AB=va2+b2 1)а-б-в 2)а-в-б 3)б-а-в 4)в-а-б 5)б-в-а 6)в-б-а
Объяснение:
1. Теорема: сумма угловΔ-ка = 180°. Из этого следует:
∠А = 180° - 30° -105° = 45° → ∠А = 45°
2. Из ∠С построим высоту СО:
СО⊥ АВ.
Рассмотрим ΔАОС.
∠АОС = 90° по построению,
∠А = 45°, значит, ∠АСО =90°- 45° = 45°.
Следовательно, ΔАОС - равнобедренный и
АО=СО.
По т. Пифагора:
АС² = АО² + СО² → АС² = 2СО² или
4² = 2*СО²
СО² = 16/2 = 8 → СО = √8 = 2√2.
СО = АО = 2√2
3. Рассмотрим ΔСОВ.
∠СОВ = 90° по построению
∠В = 30°
СО = 2√2 - катет, лежащий против угла в 30°.
Теорема: В прямоугольном Δ - ке против угла в 30° лежит катет, равный половине гипотенузы:
СВ = 2СО= 2 * 2√2 = 4√2
ОВ² =СВ² - СО² = (4√2)² - (2√2)² = 32 - 8 = 24
ОВ = √24 = 2√6
АВ = АО + ОВ = 2√2 +2√6
∠А = 45°
СВ = 4√2 ≈ 4* 1,41 = 5,64(см0
АВ = 2√2 +2√6 = 2* 1,41 +2*2,45 = 2,82 + 4,9 = 7,72 (см)
ответ: Н = √4,5 .
Объяснение:
S сф = 4πR² ; 1/2 S сф =27π ; 2πR² = 27π ; R² = 27π/ 2π = 13,5 ;
R сф = √13,5 ;
шуканий циліндр має певну висоту Н і радіус основи R₁ . Якщо твірна
циліндра АА₁ , то АА₁ = Н і R² = R₁² + H² ; R₁² = R² - H² = 13,5 - H² ;
Об"єм циліндра V = πR₁²H = π ( 13,5 - H²)*H = 13,5πH - πH³ ;
для зручності позначимо Н = х , тоді
V ( x ) = 13,5πx - πx³ ; xЄ [ 0 ; √13,5 ] ;
дослідимо функцію V ( x ) :
V '( x ) = 13,5π - 3πx² = 3π (4,5 - x² ) ;
V '( x ) = 0 ; 3π (4,5 - x² ) = 0 ; > x² = 4,5 ; x = √4,5 ( x > 0 ) .
V '( 1 ) > 0 ; V '( 3 ) < 0 ; тому х = Н = √4,5 - максимум .
отже , висота найбільшоб"ємного впис . циліндра Н = √4,5 .