Основания равнобокой трапеции равны 8 см и 18 см. Точка удалена от каждой стороны трапеции на 10 см. Найдите расстояние от этой точки до плоскости трапеции.
———————
ответ: 8 см.
Объяснение:
Назовем данную точку Е.
Точка удалена от каждой стороны трапеции на равное расстояние, т.е. на длину перпендикуляров, проведенных от этой точки к сторонам трапеции (см. рисунок во вложении.)
ЕК=ЕF=EM=EP.
Искомое расстояние - перпендикуляр ЕО к плоскости трапеции. Прямоугольные треугольники ЕOF=EOM=EОP=EOK, проекции их гипотенуз - по т. о 3-х перпендикулярах - перпендикулярны сторонам трапеции и равны радиусу вписанной в трапецию окружности.
Суммы противоположных сторон четырехугольника, в который вписана окружность, равны. ⇒ АВ+СD=BC+AD=8+18=26. Боковые стороны равны между собой (дано), ⇒ их длина 26:2=13 см.
Из вершины В трапеции опустим перпендикуляр ВН на АD. Он является высотой трапеции и равен диаметру вписанной окружности.
АН - полуразность оснований. АН=(АD-ВС):2=5.
Из ∆ АВН по т.Пифагора ВН=√(AB²-AH²)=√(13²-5²)=12 см ⇒ d= МК=12, ОК=r=12:2=6 см.
Из ∆ ЕОК по т.Пифагора ЕО=√(EK²-КО²)=√(10²-6²)=8 (см).
окей я добавил фото с рисунками
часть 1
1. 3)
2.
дано:
δавс
∠а-112°
найти:
∠в
находим угол при основании
1)180-112=68°
углы при основании равны, зная это находим третий угол
2)∠=180-68*2=44°
ответ: 44°
3.
дано:
δавс
∠в=30°
ас=3 см
найти:
вс
сторона, лежащая напротив угла в 30 в 2 раза меньше гипотенузы, зная это
вс=3*2=6 см
ответ: 6 см
4.
дано:
окружность с центром о
ав-хорда
∠оав=48°
найти:
∠аов
если соединить точки хорды с центром получим равнобедренный треугольник, зная, что углы у него при основании равны, считаем угол аов
∠аов=180-48*2=84°
ответ: 84°
часть 2
5.
дано:
δавс
найти:
∠при основании
углы при основании равны
пусть угол при основании будет х°, значит противолежащий основанию 7х°, исходя из этого составим уравнение
7х+х+х=180
решаем как линейное уравнение
9х=180
х=180: 9
х=20
ответ: 20°
Основания равнобокой трапеции равны 8 см и 18 см. Точка удалена от каждой стороны трапеции на 10 см. Найдите расстояние от этой точки до плоскости трапеции.
———————
ответ: 8 см.
Объяснение:
Назовем данную точку Е.
Точка удалена от каждой стороны трапеции на равное расстояние, т.е. на длину перпендикуляров, проведенных от этой точки к сторонам трапеции (см. рисунок во вложении.)
ЕК=ЕF=EM=EP.
Искомое расстояние - перпендикуляр ЕО к плоскости трапеции. Прямоугольные треугольники ЕOF=EOM=EОP=EOK, проекции их гипотенуз - по т. о 3-х перпендикулярах - перпендикулярны сторонам трапеции и равны радиусу вписанной в трапецию окружности.
Суммы противоположных сторон четырехугольника, в который вписана окружность, равны. ⇒ АВ+СD=BC+AD=8+18=26. Боковые стороны равны между собой (дано), ⇒ их длина 26:2=13 см.
Из вершины В трапеции опустим перпендикуляр ВН на АD. Он является высотой трапеции и равен диаметру вписанной окружности.
АН - полуразность оснований. АН=(АD-ВС):2=5.
Из ∆ АВН по т.Пифагора ВН=√(AB²-AH²)=√(13²-5²)=12 см ⇒ d= МК=12, ОК=r=12:2=6 см.
Из ∆ ЕОК по т.Пифагора ЕО=√(EK²-КО²)=√(10²-6²)=8 (см).