В прямоугольную трапецию с периметром 242 см вписан круг, радиус которого = 30см. Найдите отрезки большей боковой стороны трапеции на которые ее делит точка касания круга. если разница этих отрезков равна 11см
Объяснение:
Большая боковая сторона это СД
Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны⇒АВ+СД=ВС+АД=242:2=121 (см).
Радиус, проведенный в точку касания перпендикулярен касательной ⇒ R=НК=АВ=30*2=60(см).
Значит АВ+СД=121 , 60+СД=121 , СД=61 см.
Пусть меньший отрезок стороны СД будет х см, тогда больший отрезок стороны СД= будет х+11, а из сумма 61 см. Составим уравнение : х+х+11=61 , х=25см
Меньший отрезок 25 см, больший отрезок 25+11=36 (см)
Рисунок в приложении. Проведем диагональ AC, получим треугольник ACD у которого AD=CD=12 и угол D=60°. Так как AD=CD => треуг. равноб. => угол ACD=углу DAC. по теореме о сумме углов треугольника: угол ACD+ угол DAC+угол D=180° 2 угла ACD=120 угол ACD=уголDAC=120/2=60°, все углы равны => треугольник равносторонний =>AC=12. рассмотрим треугольник ABC - он прямоугольный(угол B=90°). так как угол A=90°(прямоуг. трапеция) => угол BAC=90-угол DAC=90-60=30°. В треуг. ABC AC - гипотенуза. А катет, лежащий против угла в 30° равен половине гипотенузы => BC=(1/2)*AC=12/2=6 найдем AB по теореме Пифагора:
В прямоугольную трапецию с периметром 242 см вписан круг, радиус которого = 30см. Найдите отрезки большей боковой стороны трапеции на которые ее делит точка касания круга. если разница этих отрезков равна 11см
Объяснение:
Большая боковая сторона это СД
Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны⇒АВ+СД=ВС+АД=242:2=121 (см).
Радиус, проведенный в точку касания перпендикулярен касательной ⇒ R=НК=АВ=30*2=60(см).
Значит АВ+СД=121 , 60+СД=121 , СД=61 см.
Пусть меньший отрезок стороны СД будет х см, тогда больший отрезок стороны СД= будет х+11, а из сумма 61 см. Составим уравнение : х+х+11=61 , х=25см
Меньший отрезок 25 см, больший отрезок 25+11=36 (см)
Проведем диагональ AC, получим треугольник ACD у которого AD=CD=12 и угол D=60°. Так как AD=CD => треуг. равноб. => угол ACD=углу DAC. по теореме о сумме углов треугольника:
угол ACD+ угол DAC+угол D=180°
2 угла ACD=120
угол ACD=уголDAC=120/2=60°, все углы равны => треугольник равносторонний =>AC=12.
рассмотрим треугольник ABC - он прямоугольный(угол B=90°).
так как угол A=90°(прямоуг. трапеция) => угол BAC=90-угол DAC=90-60=30°. В треуг. ABC AC - гипотенуза. А катет, лежащий против угла в 30° равен половине гипотенузы => BC=(1/2)*AC=12/2=6
найдем AB по теореме Пифагора:
И теперь находим периметр:
ответ: