Таблица точек для графика приложена Из графика видно, что функция возрастает от (-∞;-2] и от [3;+∞) Это пока примерное решение, найдём точное производная функции f(x) = 2x³ - 3x² - 36x + 11 f'(x) = 3*2x² - 2*3x - 36 = 6x² - 6x - 36 = 6(x² - x - 6) Найдём нули производной для определения точек экстремумов функции f'(x) = 0 6(x² - x - 6) = 0 x² - x - 6 = 0 Дискриминант D = (-1)² - 4*1*(-6) = 1 + 24 = 25 = 5² Корни x₁ = (1 - 5)/2 = -2 x₂ = (1 + 5)/2 = 3 Т.е. точки, определённые по графику - точны, и ответ функция возрастает при x ∈ (-∞;-2] и x ∈ [3;+∞)
биссектриса ВК=18 проведена к основанию и является и медианой и высотой (т.к треугольник равнобедренный) => АК=КС=8 и треугольник АКВ прямоугольный
обозначим угол АВК = альфа
тогда угол ВАС = угол ВСА = (90-альфа)
по определению синуса sin(альфа) = 8 / (2V97) = 4 / V97
найдем АВ
по т.Пифагора из треугольника АКВ: АВ^2 = 8^2+18^2 = 388
АВ = V388 = V(4*97) = 2V97
медиану (обозначим ее х), проведенную к боковой стороне (она разобьет боковую сторону на два равных отрезка по V97) можно найти по т.косинусов...
х^2 = 16^2 + (V97)^2 - 2*16*V97*cos(90-альфа) =
256 + 97 - 32*V97*sin(альфа) = 353 - 32*V97*4 / V97 = 353 - 32*4 = 353 - 128 = 225
x = 15
Из графика видно, что функция возрастает от (-∞;-2] и от [3;+∞)
Это пока примерное решение, найдём точное
производная функции
f(x) = 2x³ - 3x² - 36x + 11
f'(x) = 3*2x² - 2*3x - 36 = 6x² - 6x - 36 = 6(x² - x - 6)
Найдём нули производной для определения точек экстремумов функции
f'(x) = 0
6(x² - x - 6) = 0
x² - x - 6 = 0
Дискриминант
D = (-1)² - 4*1*(-6) = 1 + 24 = 25 = 5²
Корни
x₁ = (1 - 5)/2 = -2
x₂ = (1 + 5)/2 = 3
Т.е. точки, определённые по графику - точны, и ответ
функция возрастает при
x ∈ (-∞;-2] и x ∈ [3;+∞)