Визначте вид чотирикутника MNPK, якщо M(0; -2,0) N(4,1,0) P(4,5,1) K(0,-2,5). На русском:Определите вид четырехугольника MNPK, если M (0; 2,0) N (4,1,0) P (4,5,1) K (0, -2,5).
Пусть трапеция АВСD и ее диагонали пересекаются в точке О. Если трапеция является равнобедренной, то прямая, которая проходит через середины оснований, перпендикулярна основаниям и длины диагоналей равны(свойство). Тогда прямоугольные треугольники АОD и ВОС (прямые углы АОD и ВОС - дано) равнобедренные и углы прилежащие к гипотенузам равны 45°. Следовательно, высоты этих треугольников ОН=АD/2, а ОР=ВС/2. Сумма этих высот равна высоте трапеции h. Площадь трапеции равна: S=(AD+BC)*h/2. AD+BC=36 (дано). Подставим в формулу площади значение h=OH+ОP=(1/2)(AD+BC) и получим:S=(AD+BC)*(AD+BC)/4 или 36*36/4=324.
В равнобедренной трапеции углы при любом основании равны: <А=<Д=54° <В=<С=180-54=126° ΔСДК- равнобедренный (СД=ДК, значит углы при основании равны (<ДСК=<ДКС) Если ДК была бы проведена внутри трапеции, то <ДСК - это есть <С, равный 126°. Значит в треугольнике 2 угла при основании равны по 126°, что не реально (сумма углов треугольника 180°). Значит ДК проведена за трапецией к продолжению прямой ВС. Тогда <ДСК смежный с <С, значит равен <ДСК=<ДКС=180-126=54° Следовательно <СДК=180-2<ДСК=180-2*54=72°
<А=<Д=54°
<В=<С=180-54=126°
ΔСДК- равнобедренный (СД=ДК, значит углы при основании равны (<ДСК=<ДКС)
Если ДК была бы проведена внутри трапеции, то <ДСК - это есть <С, равный 126°. Значит в треугольнике 2 угла при основании равны по 126°, что не реально (сумма углов треугольника 180°).
Значит ДК проведена за трапецией к продолжению прямой ВС. Тогда <ДСК смежный с <С, значит равен <ДСК=<ДКС=180-126=54°
Следовательно <СДК=180-2<ДСК=180-2*54=72°