Визначте зайву дію у поділі відрізка АВ навпіл : 1. проводимо пряму СС1 , яка перетинає АВ в точці 0. 2. будуємо коло з центром у точці А і радіусом АВ та коло з центром у точці В і радіусом АВ. 3. проводимо відрізок АС1. 4. позначаємо точки С та С1 - точки перетину ціх кіл.
Треугольник СДЕ прямоугольный и равнобедренный, так как СЕ высота трапеции, а угол СДЕ равен 450, тогда СЕ = ЕД = 4 см.
Так как BF высота трапеции, то BF = СЕ = 4 см, а треугольник АВF прямоугольный, тогда: tg60 = BF / AF. AF = BF / tg60 = 4 / √3 см.
Длина отрезка EF = ВС = 5 см, тогда АД = AF + EF + ДЕ = 4 / √3 + 5 + 4 = 9 + 4 / √3 см.
Определим площадь трапеции:
Sавсд = (ВС + АД) * СЕ / 2 = (5 + 9 + 4 / √3) * 4 / 2 = 28 + 8 / √3 = (84 + 8 * √3) / 3 см2.
ответ: Площадь трапеции равна (84 + 8 * √3) / 3 см2
как то так =)
Задание #1.
Из вершины В ∆АВС на сторону АС опускаем высоту ВН.
Площадь треугольника равна половине произведения его стороны на высоту, опущенной на эту сторону.АС = 6 (ед), ВН = 3 (ед).
Тогда S∆ABC = ½×AC×BH = ½×6 (ед)×3 (ед) = 9 (ед²).
9 (ед²).
Задание #2.
Из вершины А в ∆АВС на продолжение стороны СВ опускаем высоту АН.
Площадь треугольника равна половине произведения его стороны на высоту, опущенной на эту сторону.АН = 5 (ед), СВ = 8 (ед).
Тогда S∆ABC = ½×AH×CB = ½×5 (ед)×8 (ед) = 20 (ед²).
20 (ед²).