В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
очентупой
очентупой
21.01.2022 20:31 •  Геометрия

Вкакой точке касательная к графику заданой функции у=f(x) поральна заданной примой у=2-х cоставте уравнение касательной в полученной точке

Показать ответ
Ответ:
sasha524856
sasha524856
24.07.2020 18:22
В уравнении касательной вида у = кх + в коэффициент к, показывающий крутизну наклона к оси х, равен производной функции в данной точке.
y' = x² + 2x - 1.
Так как коэффициент к прямой 2 - х, параллельной касательной, равен -1, то, приравняв производную этому значению, определим точку касания:
 x² + 2x - 1 = -1
 x² + 2x = 0
х(х+2) = 0
Получаем 2 точки:
х₁ = 0
х₂ = -2.
Уравнения касательных находим из равенства координат:
х₁ = 0        у = 0
х₂ = -2       у = (-8/3)+4+2 = 10/3.
Первая касательная проходит через начало координат, поэтому параметр в = 0 и уравнение её у = -х
Для второй касательной определим параметр в:
10/3 = -1*(-2) + в
в =(10/3)-2 = 4/3 и уравнение имеет вид у = -х + (4/3).
Вкакой точке касательная к графику заданой функции у=f(x) поральна заданной примой у=2-х cоставте ур
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота