Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:
ответ: 1
A3.
Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):
Площадь одного треугольника будет равна:
Площадь шестиугольника:
ответ: 2
B1.
Пусть вписанный треугольник - ΔABC, сторона = ; описанный - ΔA₁B₁C₁, сторона -
A1.
Sшестиугольника =
ответ: 4
A2.
Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:
ответ: 1
A3.
Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):
Площадь одного треугольника будет равна:
Площадь шестиугольника:
ответ: 2
B1.
Пусть вписанный треугольник - ΔABC, сторона = ; описанный - ΔA₁B₁C₁, сторона -
Для ΔA₁B₁C₁ радиус высоты
⇒
⇒
Для ΔABC радиус R = высоты :
⇒
⇒
Найдем соотношение периметров и площадей:
Шар вписан в конус. найти наименьший объём конуса, если радиус шара равен 1.
Решение.
1) Рассмотрим осевое сечение данной комбинации тел : равнобедренный ΔАВС , высота ВН , точка О-центр вписанной окружности. К-точка касания окружности со стороной АВ. По условию ОН=ОК=1 ед.
Пусть ВН=h , AH=R. Vкон=1/3*Sосн*h , Sосн=π*R²
Выразим объём через высоту конуса.
Отрезок ВО=ВН-ОН=h-1
По т. Пифагора , ΔABH , АВ²=АН²+ВН²=R²+h² .
2) ΔКВО~ ΔHBA по двум углам(∠В-общий,∠ВКО=АНВ=90° тк радиус перпендикулярен касательной , проведенной в точку касания).
Значит КО:АН=ВО:АВ или 1:R=(h-1): √(R²+h²) ⇒ R²= .
3) V(h)= = = .
V' =
= , V'=0, при h=4 .
V' _ _ _ _(4) + + + +
V ↓ ↑ , значит h=4 точка минимума. Наименьший объём достигается в точке минимума .
V = ⇒ V= ед³ .