Деревня расположена на высоте 9,15 м над уровнем моря, у подножия вулкана Камерун. Близ деревни находится озеро вулканического происхождения.
На одноимённом мысе около деревни расположен маяк, который в 1904 году установили немецкие колонисты.
Здесь регистрировался абсолютный максимум осадков для Африки — 10 287 мм в год[2]. С октября по май выпадает 750 мм[3]. Максимальное среднегодовое количество осадков зарегистрировано в 1919 году — 14 680 мм (Lefevre, 1972) [4] 14 694 мм [5]. В среднем число дней с осадками превышает 200 в год.
В треугольнике ABC AB=8*V2, AC=18, угол А=45 градусам. Найдите медиану, проведенную из вершины А
По теореме косинусов находим квадрат третей стороны треугольника: ВС² = АВ²+АС²-2*АВ*АС*Cos45° = 128+324-2*8√2*18*0,707 =164. Продолжаем медиану за точку пересечения с третей стороной и откладываем на продолжении отрезок, равный медиане. Имеем параллелограмм ( по признаку параллелограмма: если диагонали четырехугольника делятся в точке их пересечения пополам, то этот четырехугольник - параллелограмм). По свойству параллелограмма: "Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон" находим вторую диагональ (первая это ВС): 164+X² =2*(128+324), отсюда Х = √740 ≈ 27,2 Это две медианы, значит медиана равна 13,6.
Объяснение:
Деревня расположена на высоте 9,15 м над уровнем моря, у подножия вулкана Камерун. Близ деревни находится озеро вулканического происхождения.
На одноимённом мысе около деревни расположен маяк, который в 1904 году установили немецкие колонисты.
Здесь регистрировался абсолютный максимум осадков для Африки — 10 287 мм в год[2]. С октября по май выпадает 750 мм[3]. Максимальное среднегодовое количество осадков зарегистрировано в 1919 году — 14 680 мм (Lefevre, 1972) [4] 14 694 мм [5]. В среднем число дней с осадками превышает 200 в год.
По теореме косинусов находим квадрат третей стороны треугольника:
ВС² = АВ²+АС²-2*АВ*АС*Cos45° = 128+324-2*8√2*18*0,707 =164.
Продолжаем медиану за точку пересечения с третей стороной и откладываем на продолжении отрезок, равный медиане. Имеем параллелограмм ( по признаку параллелограмма: если диагонали четырехугольника делятся в точке их пересечения пополам, то этот четырехугольник - параллелограмм). По свойству параллелограмма: "Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон" находим вторую диагональ (первая это ВС):
164+X² =2*(128+324), отсюда Х = √740 ≈ 27,2 Это две медианы, значит медиана равна 13,6.