Обозначим через х длину того катета данного прямоугольного треугольника, который составляет с гипотенузой угол в 30°, а через у — длину второго катета.
Используя формулы сторон прямоугольного треугольника, выразим через х длину второго катета:
у = х * tg( 30°) = x * √3.
Согласно условию задачи, площадь данного прямоугольного треугольника равна 32√3.
Поскольку площадь любого прямоугольного треугольника равна половине произведения его катетов, следовательно, можем составить следующее уравнение:
х * х * √3 / 2 = 32√3.
Решаем полученное уравнение:
х² = 32√3 / (√3/2);
х² = 64;
х = 8.
Зная длину первого катета, находим длину второго:
у = x * √3 = 8√3.
Используя теорему Пифагора, находим длину гипотенузы:
Четырехугольником называется фигура, которая состоит из четырех точек ( вершин), и четырех последовательно соединяющих их отрезков (сторон), причем никакие три из вершин не лежат на одной прямой, а соединяющие их отрезки не пересекаются.
2.Какие вершины четырехугольника называются соседними, какие –противолежащими?
Соседними называются вершины четырехугольника, которые являются концами одной из его сторон. Вершины, не являющиеся соседними, называются противолежащими.
3.Что такое диагональ четырехугольника?
Диагоналями четырехугольника называются отрезки. которые соединяют его противоположные вершины.
4.Как обозначается четырехугольник?
Четырехугольник обычно обозначается латинскими буквами, которые присваиваются каждой вершине.
5.Что такое параллелограмм?
Четырехугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
У параллелограмма противолежащие стороны равны и противолежащие углы равны а его диагонали точкой пересечения делятся пополам.
Обозначим через х длину того катета данного прямоугольного треугольника, который составляет с гипотенузой угол в 30°, а через у — длину второго катета.
Используя формулы сторон прямоугольного треугольника, выразим через х длину второго катета:
у = х * tg( 30°) = x * √3.
Согласно условию задачи, площадь данного прямоугольного треугольника равна 32√3.
Поскольку площадь любого прямоугольного треугольника равна половине произведения его катетов, следовательно, можем составить следующее уравнение:
х * х * √3 / 2 = 32√3.
Решаем полученное уравнение:
х² = 32√3 / (√3/2);
х² = 64;
х = 8.
Зная длину первого катета, находим длину второго:
у = x * √3 = 8√3.
Используя теорему Пифагора, находим длину гипотенузы:
√(8² + (8√3)²) = √(64 + 64 * 3) = √(64 * 4) = 8 * 2 = 16.
ответ: длина гипотенузы равна 16.
1.Какая фигура называется четырехугольником?
Четырехугольником называется фигура, которая состоит из четырех точек ( вершин), и четырех последовательно соединяющих их отрезков (сторон), причем никакие три из вершин не лежат на одной прямой, а соединяющие их отрезки не пересекаются.
2.Какие вершины четырехугольника называются соседними, какие –противолежащими?
Соседними называются вершины четырехугольника, которые являются концами одной из его сторон. Вершины, не являющиеся соседними, называются противолежащими.
3.Что такое диагональ четырехугольника?
Диагоналями четырехугольника называются отрезки. которые соединяют его противоположные вершины.
4.Как обозначается четырехугольник?
Четырехугольник обычно обозначается латинскими буквами, которые присваиваются каждой вершине.
5.Что такое параллелограмм?
Четырехугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
У параллелограмма противолежащие стороны равны и противолежащие углы равны а его диагонали точкой пересечения делятся пополам.