Вконусе угол между образующей и плоскостью основания равен 30 градусов. объем конуса равен 8. найдите площадь сечения, проведенного через две образующие конуса, угол меду которыми равен 30 градусов.
Точка пересечения серединных перпендикуляров треугольника равноудалена от его вершин. Значит любая точка, лежащая на перпендикуляре, проведенном из точки пересечения серединных перпендикуляров, тоже равноудалена от вершин треугольника (равенство треугольников, образованных серединными перпендикулярами и общей стороной - перпендикуляром, т. е. по двум сторонам и углу между ними) .
Может теорема такая?
Точка равноудалена от сторон треугольника, если это точка принадлежит перпендикуляру, проведенному из точки пересечения серединных перпендикуляров треугольника. Может так звучит?
Уравнение окружности: x2+y2=72. Уравнение прямой: x+y+c=0. Найди значения коэффициента c, с которым прямая и окружность имеет одну общую точку (прямая касается окружности).
Объяснение:
x²+y²=72, x+y+c=0
у=-(х+с). Подставим в уравнение окружности .
x²+(-(х+с))²=72 , х²+х²+2сх+с²-72=0 , 2х²+2хс+(с²-72)=0. Это уравнение должно иметь одно решение ( прямая и окружность имеет одну общую точку ), значит Д=0
Объяснение:
так думаю.
Точка пересечения серединных перпендикуляров треугольника равноудалена от его вершин. Значит любая точка, лежащая на перпендикуляре, проведенном из точки пересечения серединных перпендикуляров, тоже равноудалена от вершин треугольника (равенство треугольников, образованных серединными перпендикулярами и общей стороной - перпендикуляром, т. е. по двум сторонам и углу между ними) .
Может теорема такая?
Точка равноудалена от сторон треугольника, если это точка принадлежит перпендикуляру, проведенному из точки пересечения серединных перпендикуляров треугольника. Может так звучит?
нравится8
Уравнение окружности: x2+y2=72. Уравнение прямой: x+y+c=0. Найди значения коэффициента c, с которым прямая и окружность имеет одну общую точку (прямая касается окружности).
Объяснение:
x²+y²=72, x+y+c=0
у=-(х+с). Подставим в уравнение окружности .
x²+(-(х+с))²=72 , х²+х²+2сх+с²-72=0 , 2х²+2хс+(с²-72)=0. Это уравнение должно иметь одно решение ( прямая и окружность имеет одну общую точку ), значит Д=0
Д=(2с)²-4*2*(с²-72)=4с²-8с²+8*72=-4с²+8*72,
-4с²+8*72=0 , -4с²=8*72, с²=2*72, с²=144 , с=±12
ответ . -12; 12