Если разделить AC на 4 равные части и провести через границы этих частей перпендикуляры к AB, то AB разделится на 4 равные части по теореме Фалеса.
Пусть MH⊥AB, H∈AB ⇒ AH : BH = 1 : 3 ⇒ AB : BH = 4 : 3.
Т. к. ∠H = 90°, ∠HAM = 45° ⇒ ∠HMA = 45° = ∠HAM ⇒ AH = MH = 1/4
Рассмотрим ΔABN и ΔHBM: ∠ABN - общий, ∠A = ∠H = 90° ⇒ ΔABN ~ ΔHBM по I признаку ⇒ AN : MH = AB : HB ⇒ AN : (1/4) = 4 : 3 ⇒ AN = 1/3.
ответ: 1/3
Если разделить AC на 4 равные части и провести через границы этих частей перпендикуляры к AB, то AB разделится на 4 равные части по теореме Фалеса.
Пусть MH⊥AB, H∈AB ⇒ AH : BH = 1 : 3 ⇒ AB : BH = 4 : 3.
Т. к. ∠H = 90°, ∠HAM = 45° ⇒ ∠HMA = 45° = ∠HAM ⇒ AH = MH = 1/4
Рассмотрим ΔABN и ΔHBM: ∠ABN - общий, ∠A = ∠H = 90° ⇒ ΔABN ~ ΔHBM по I признаку ⇒ AN : MH = AB : HB ⇒ AN : (1/4) = 4 : 3 ⇒ AN = 1/3.
ответ: 1/3