Если диаметр окружности с центром в точке О образует с хордой ВС угол 30°, то
А. треугольник СОВ - равносторонний - НЕ ВЕРНО
В равностороннем треугольнике все углы по 60°, а в треугольнике СОВ ∠В=30°.
Б. ∠ОСВ = 30° - ВЕРНО
В треугольнике СОВ равны две стороны : ОВ=ОС - это радиусы окружности. Значит, ΔСОВ равнобедренный. В равнобедренном треугольнике углы при основании равны : ∠ОСВ=∠В=30°
В. ∠СОА = 50° - НЕ ВЕРНО
∠СОА - внешний угол треугольника ОСВ равен сумме двух внутренних углов, не смежных с ним :
5. Пользуемся ответами от 3 и 4 задания. Сумма периметров треугольников АВС и DEF равна 12 см (7 см+5 см). Я не знаю, там нужно писать единицы измерения или нет.
Если диаметр окружности с центром в точке О образует с хордой ВС угол 30°, то
А. треугольник СОВ - равносторонний - НЕ ВЕРНО
В равностороннем треугольнике все углы по 60°, а в треугольнике СОВ ∠В=30°.
Б. ∠ОСВ = 30° - ВЕРНО
В треугольнике СОВ равны две стороны : ОВ=ОС - это радиусы окружности. Значит, ΔСОВ равнобедренный. В равнобедренном треугольнике углы при основании равны : ∠ОСВ=∠В=30°
В. ∠СОА = 50° - НЕ ВЕРНО
∠СОА - внешний угол треугольника ОСВ равен сумме двух внутренних углов, не смежных с ним :
∠СОА = ∠ОСВ + ∠В = 30° + 30° = 60°
ответ : Б, ∠ОСВ = 30°
Написала на картинке.
1. Каждая сторона треугольника меньше суммы двух других сторон. Пользуясь этой теоремой, пишем неравенства для сторон шестиугольника.
2. Неравенство для второго вопроса -
PK+KL+LM+MN+NR+PR < PA+KA+DK+DL+LB+BM+ME+EN+NC+RC+PF+FR.
3. Неравенство для третьего вопроса -
2*(PK+KL+LM+MN+NR+PR) < PA+KA+DK+DL+LB+BM+ME+EN+NC+RC+PF+FR+(PK+KL+LM+MN+NR+PR).
4. На картинке.
5. Пользуемся ответами от 3 и 4 задания. Сумма периметров треугольников АВС и DEF равна 12 см (7 см+5 см). Я не знаю, там нужно писать единицы измерения или нет.
Вот такое неравенство в итоге получилось -
2*(PK+KL+LM+MN+NR+PR) < 12 см.
6. Логично, что поделить на 2.
Получаем, что -
2*(PK+KL+LM+MN+NR+PR) < 12 см
PK+KL+LM+MN+NR+PR < 6 см.
Это нам и нужно было доказать.