Объяснение:
1. у него равны 2 стороны(по рисунку) и треугольник; т.к. АОС и ДОС-вертикальные(равен по 2 сторонам и углу)
2.МОN=РОQ(вертикальные)
1=2(по рисунку), и рааная сторона(значит он равен по 2 углам и протеволежащей стороне)
3. одна сторона общая(по римунку), 1=2, 3=4.(равны по 2 углам и протеволежащей стороне)
4. одна сторона общая(по рисунку), 2 равные стороны, и также по рисунку видно, что 1 и 2 равны(по 2 сторонам и углу)
5. две стороны равны, и одна общая(равны по 3 сторонам)
6. 2 стороны равны и 1 общая(по рисунку), значит он равен по 3 сторонам
надеюсь нормально. названия я писать не стала, думаю Вы увидите на рисунке
қиық пирамида көлемі
V=7√3 /36 см³
а2=2см
а1=1 см
α=30°
V- ?
қиық пирамида төменгі табанындағы дұрыс үшбұрыштың сырттай сызылған шеңбердің радиусы
Rт=a2/√3=2/√3 см
жоғарғы
Rж=а1/√3=1/√3 см
пирамида қиылмаған жағдайдағы биіктігі (пирамида төбесінен төмендегі табанға дейінгі )
Hтөм= tgα×Rт=tg30° ×2/√3=√3/3 × 2/√3=2/3 см
жоғарғы табан биіктігі
Hжоғ=tgα×Rж=tg30°×1/√3 =√3/3 × 1/√3=1/3 см
қиылған пирамида биіктігі
Hқ=Нтөм- Нжоғ=2/3 - 1/3 = (2 - 1)/3=1/3 см
жоғарғы табан ауданы ( дұрыс тең қабырғалы үшбұрыштың ауданы формуласымен )
S1=a²√3 /4= 1² ×√3 /4= √3 /4 см²
төменгі табан ауданы
S2=а²√3 /4=2²×√3 /4= 4×√3 /4=√3 см²
V=1/3 × H×(S1+√S1×S2 + S2)
V=1/3 × 1/3×(√3/4 + √(√3/4 × √3) + √3 )=
=1/9×(√3 /4 +√3 /2 + √3)=1/9×( (√3 +2√3 + 4√3)/4 )=
=1/9 × 7√3/ 4=7√3 /36 см³
Объяснение:
1. у него равны 2 стороны(по рисунку) и треугольник; т.к. АОС и ДОС-вертикальные(равен по 2 сторонам и углу)
2.МОN=РОQ(вертикальные)
1=2(по рисунку), и рааная сторона(значит он равен по 2 углам и протеволежащей стороне)
3. одна сторона общая(по римунку), 1=2, 3=4.(равны по 2 углам и протеволежащей стороне)
4. одна сторона общая(по рисунку), 2 равные стороны, и также по рисунку видно, что 1 и 2 равны(по 2 сторонам и углу)
5. две стороны равны, и одна общая(равны по 3 сторонам)
6. 2 стороны равны и 1 общая(по рисунку), значит он равен по 3 сторонам
надеюсь нормально. названия я писать не стала, думаю Вы увидите на рисунке
қиық пирамида көлемі
V=7√3 /36 см³
а2=2см
а1=1 см
α=30°
V- ?
қиық пирамида төменгі табанындағы дұрыс үшбұрыштың сырттай сызылған шеңбердің радиусы
Rт=a2/√3=2/√3 см
жоғарғы
Rж=а1/√3=1/√3 см
пирамида қиылмаған жағдайдағы биіктігі (пирамида төбесінен төмендегі табанға дейінгі )
Hтөм= tgα×Rт=tg30° ×2/√3=√3/3 × 2/√3=2/3 см
жоғарғы табан биіктігі
Hжоғ=tgα×Rж=tg30°×1/√3 =√3/3 × 1/√3=1/3 см
қиылған пирамида биіктігі
Hқ=Нтөм- Нжоғ=2/3 - 1/3 = (2 - 1)/3=1/3 см
жоғарғы табан ауданы ( дұрыс тең қабырғалы үшбұрыштың ауданы формуласымен )
S1=a²√3 /4= 1² ×√3 /4= √3 /4 см²
төменгі табан ауданы
S2=а²√3 /4=2²×√3 /4= 4×√3 /4=√3 см²
қиық пирамида көлемі
V=1/3 × H×(S1+√S1×S2 + S2)
V=1/3 × 1/3×(√3/4 + √(√3/4 × √3) + √3 )=
=1/9×(√3 /4 +√3 /2 + √3)=1/9×( (√3 +2√3 + 4√3)/4 )=
=1/9 × 7√3/ 4=7√3 /36 см³