В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
Если все боковые грани наклонены к основанию под одинаковыми углами, то проекции высот боковых граней на основание - это радиусы r вписанной в основание окружности.
Высота основания к стороне 6 см равна √)5² - (6/2)²) = 4 см.
Площадь основания So = (1/2)*6*4 = 12 см².
Периметр основания Р = 2*5 + 6 = 16 см. полупериметр р = 16/2 = 8 см.
Радиус вписанной окружности r = S/p = 12/8 = 1,5 см.
Высота наклонной грани hн = r/cos 60° = 1.5/(1/2) = 3 см.
Площадь боковой поверхности Sбок = (1/2)Рhн = (1/2)*16*3 = 24 см².
Задача
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
V=P(осн)*h.
V=(4+4+4+8)*4√3 =80√3 ( см³)
Если все боковые грани наклонены к основанию под одинаковыми углами, то проекции высот боковых граней на основание - это радиусы r вписанной в основание окружности.
Высота основания к стороне 6 см равна √)5² - (6/2)²) = 4 см.
Площадь основания So = (1/2)*6*4 = 12 см².
Периметр основания Р = 2*5 + 6 = 16 см. полупериметр р = 16/2 = 8 см.
Радиус вписанной окружности r = S/p = 12/8 = 1,5 см.
Высота наклонной грани hн = r/cos 60° = 1.5/(1/2) = 3 см.
Площадь боковой поверхности Sбок = (1/2)Рhн = (1/2)*16*3 = 24 см².
Sполн = 12 + 24 = 36 см².