1. Провести прямую ВС, и провести от точки А к прямой отрезок (самый короткий с улом 90') од будет равняться двум клеткам отсюда расстояние от точки А до прямой ВС = 2*1 см=2 см
2. Угол СВА=180°-146°=34°
Так как треугольник равнобедренный за условием то угол СВА=САВ=34°
Угол С=180-уг.СВА-уг.САВ=180°-68°=112°
ответ:112°
3. ∆ равнобедренный за условием, то есть уг.А=уг.С
Сумма углов ∆ равна 180° отсюда уг.А=уг.С=(180°-124°):2=28°
ответ: уг.С= 28°
4. (Пусть < будет означать угол)
<ВСК=<КСА=80:2=40
<СВК=<КВА=40:2=20
Рассмотрим ∆ СВК (сумма углов равна 180°)
<ВКС=180-40-20=120°
5. <4=180°-<3=180°-55°=125°
6.<САМ=180°-<СМВ
<СМВ=60*2=120°
<САМ=180-120=60°
7. Пускай один острый угол равняется 3х, значит второй 6х. Составим уравнение.
Отношение площади боковой поверхности призмы к боковой поверхности вписанного цилиндра:
1
Поскольку половина периметра основания — полупериметр,
2
Таким образом, если цилиндр вписан в призму, отношение площади боковой поверхности призмы к боковой поверхности цилиндра равно отношению объема призмы к объему вписанного цилиндра. В частности, отношение площади боковой поверхности правильной треугольной призмы к площади боковой поверхности вписанного цилиндра
3
Отношение боковой поверхности правильной четырехугольной призмы к боковой поверхности вписанного цилиндра
4
Отношение боковой поверхности правильной шестиугольной призмы к боковой поверхности вписанного цилиндра
5
При решении задач, в которых цилиндр вписан в призму, можно рассматривать часть сечения комбинации тел плоскостью, проходящей через ось цилиндра. Для прямой призмы это сечение — прямоугольник, стороны которого равны радиусу цилиндра и высоте цилиндра. Например, AA1O1O: AA1=H, AO=r.
1. Провести прямую ВС, и провести от точки А к прямой отрезок (самый короткий с улом 90') од будет равняться двум клеткам отсюда расстояние от точки А до прямой ВС = 2*1 см=2 см
2. Угол СВА=180°-146°=34°
Так как треугольник равнобедренный за условием то угол СВА=САВ=34°
Угол С=180-уг.СВА-уг.САВ=180°-68°=112°
ответ:112°
3. ∆ равнобедренный за условием, то есть уг.А=уг.С
Сумма углов ∆ равна 180° отсюда уг.А=уг.С=(180°-124°):2=28°
ответ: уг.С= 28°
4. (Пусть < будет означать угол)
<ВСК=<КСА=80:2=40
<СВК=<КВА=40:2=20
Рассмотрим ∆ СВК (сумма углов равна 180°)
<ВКС=180-40-20=120°
5. <4=180°-<3=180°-55°=125°
6.<САМ=180°-<СМВ
<СМВ=60*2=120°
<САМ=180-120=60°
7. Пускай один острый угол равняется 3х, значит второй 6х. Составим уравнение.
90=3х+6х
9х=90/9
х=10
Отсюда первый угол =3*10=30°
Второй угол=6*10=60°
8. Равнобедренный ∆ (равны боковые стороны)
Р=206
Составим уравнение
Пускай боковая сторона будет х, → основа х-10
х+х+х-10=206
3х=206+10
х=216/3
х=72 (боковая сторона)
х-10=72-10=62 (основа)
ответ: 72,72,62
Объяснение:
Отношение площади боковой поверхности призмы к боковой поверхности вписанного цилиндра:
1
Поскольку половина периметра основания — полупериметр,
2
Таким образом, если цилиндр вписан в призму, отношение площади боковой поверхности призмы к боковой поверхности цилиндра равно отношению объема призмы к объему вписанного цилиндра. В частности, отношение площади боковой поверхности правильной треугольной призмы к площади боковой поверхности вписанного цилиндра
3
Отношение боковой поверхности правильной четырехугольной призмы к боковой поверхности вписанного цилиндра
4
Отношение боковой поверхности правильной шестиугольной призмы к боковой поверхности вписанного цилиндра
5
При решении задач, в которых цилиндр вписан в призму, можно рассматривать часть сечения комбинации тел плоскостью, проходящей через ось цилиндра. Для прямой призмы это сечение — прямоугольник, стороны которого равны радиусу цилиндра и высоте цилиндра. Например, AA1O1O: AA1=H, AO=r.