Заметим,что <OBF=180°-75°-65°=40° (так как смежные стороны параллелограмма в сумме равны 180°). Проведем через точку О прямые EG и FH параллельно сторонам параллелограмма АВ и ВС соответственно. Треугольники АОН и СOG подобны по двум углам. Из подобия АН/CG=OH/OG или ВF/OF=DG/OG (так как BF=AH, OF=CG и DG=OH как противоположные стороны параллелограммов). Но тогда треугольник ОВF подобен треугольнику ODG по второму признаку подобия, так как <BFO=<OGD (углы с соответственно параллельными сторонами), а стороны, образующие этот угол, пропорциональны (ВF/OF=DG/OG - доказано выше). Из подобия имеем: <ODG=<OBF=40°. ответ: <ODC=40°.
Проведем через точку О прямые EG и FH параллельно сторонам параллелограмма АВ и ВС соответственно.
Треугольники АОН и СOG подобны по двум углам. Из подобия
АН/CG=OH/OG или ВF/OF=DG/OG (так как BF=AH, OF=CG и DG=OH как противоположные стороны параллелограммов).
Но тогда треугольник ОВF подобен треугольнику ODG по второму признаку подобия, так как <BFO=<OGD (углы с соответственно параллельными сторонами), а стороны, образующие этот угол, пропорциональны (ВF/OF=DG/OG - доказано выше). Из подобия имеем: <ODG=<OBF=40°.
ответ: <ODC=40°.