Сечение сферы представляет собой окружность. На рисунке показано сечение шара, 8/проходящее через диаметр АВ и центр окружности сечения с диаметром ВС. ∠ВАС=45°. КМ - касательная к окружности в точке В. АВ⊥КМ ⇒ ∠СВМ=45°. ∠СВМ - вырожденный случай вписанного угла, опирающегося на хорду ВС, значит ∠СВМ=∠ВОС/2 ⇒ α=90°. Формула хорды: l=2R·sin(α/2)=D·sin(α/2). ВС=8sin45=4√2. Линия пересечения плоскостью - это длина окружности с диаметром ВС. С=πD=BC·π=4√2π - это ответ. ------------------------------------------ Это был общий вид решения задачи для любого угла α, но в данном случае можно проще. ∠α=90°, ∠ОВС=45°, значит ОВ=ОС ⇒ ВС=ОВ√2=4√2.
На рисунке показано сечение шара, 8/проходящее через диаметр АВ и центр окружности сечения с диаметром ВС. ∠ВАС=45°.
КМ - касательная к окружности в точке В. АВ⊥КМ ⇒ ∠СВМ=45°.
∠СВМ - вырожденный случай вписанного угла, опирающегося на хорду ВС, значит ∠СВМ=∠ВОС/2 ⇒ α=90°.
Формула хорды: l=2R·sin(α/2)=D·sin(α/2).
ВС=8sin45=4√2.
Линия пересечения плоскостью - это длина окружности с диаметром ВС.
С=πD=BC·π=4√2π - это ответ.
------------------------------------------
Это был общий вид решения задачи для любого угла α, но в данном случае можно проще.
∠α=90°, ∠ОВС=45°, значит ОВ=ОС ⇒ ВС=ОВ√2=4√2.
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².