Внутри треугольника ABC взяли точку O так, что OM – серединный перпендикуляр к стороне AB, ON – серединный перпендикуляр к стороне AC. Известно, что AO = 24 см, ∠BOC = 60°. Найдите BC. ответ дайте в сантиметрах.
Прямоугольный треугольник, в котором отношение катетов равно 3:4 ( как здесь) - египетский. Гипотенуза равна 10 см ( можно проверить т.Пифагора). Высота прямоугольного треугольника из прямого угла к гипотенузе - есть среднее геометрическое (среднее пропорциональное) двух образованных ею отрезков гипотенузы. Пусть треугольник будет АВС, высота СН, отрезок ВН равен х, отрезок АН= 10-х СН²=ВН*(АВ-ВН)=х*(10-х) В то же время катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу. Возьмем катет ВС=6: 6²=10*х Тогда х=3,6 см. h²=3,6*(10-3,6)=23,04 h=4,8 см------ Т.к. высота прямоугольного треугольника из вершины прямого угла к гипотенузе делит его на два подобных, можно задачу решать через подобие.
1) Строится прямоугольный треугольник, у которого катет равен заданной высоте, а гипотенуза - заданной медиане. Это типовая задача построения прямоугольного треугольника по катету и гипотенузе (рисуется прямой угол, то есть две взаимно перпендикулярных прямых, от точки пересечения откладывается заданная высота, - найдена вершина "будущего треугольника", в неё ставится циркуль и проводится окружность радиусом, равным медиане, так где эта окружность пересечет вторую сторону прямого угла - там конец медианы и середина "будущей стороны") 2) в вершину этого треугольника, которая является общим концом медианы и высоты (то есть - вершиной треугольника, который надо построить) ставится циркуль и проводится окружность с заданным радиусом (описанной окружности). (Это уже вторая окружность с центром в этой точке :)) 3) через другой конец медианы (то есть - через середину "будущей стороны") проводится прямая параллельно высоте (то есть - перпендикулярно "будущей стороне). Центр описанной окружности лежит на пересечении этой прямой (медиатриссы) с окружностью, построенной в пункте 2) (Потому что центр описанной окружности равноудален от концов "будущей стороны" и находится на заданном расстоянии от вершины) 4) теперь просто рисуется описанная окружность, и катет построенного в пункте 1) треугольника, (то есть кусок "будущей стороны", который заключен между медианой и высотой) продолжается в обе стороны до пересечения с ней. 5) все вершины треугольника найдены, то есть он построен. Примечание. Окружность в 2) и медиатрисса в 3) могут пересекаться в двух точках, и в принципе, тут получается некая неоднозначность. Наличие двух возможных решений - не недостаток :). Я думаю, автор задачи легко рассмотрит варианты, когда есть 1 решение, когда 2, а когда и вообще нет.
Высота прямоугольного треугольника из прямого угла к гипотенузе - есть среднее геометрическое (среднее пропорциональное) двух образованных ею отрезков гипотенузы.
Пусть треугольник будет АВС, высота СН, отрезок ВН равен х, отрезок АН= 10-х
СН²=ВН*(АВ-ВН)=х*(10-х)
В то же время
катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу.
Возьмем катет ВС=6:
6²=10*х
Тогда х=3,6 см.
h²=3,6*(10-3,6)=23,04
h=4,8 см------
Т.к. высота прямоугольного треугольника из вершины прямого угла к гипотенузе делит его на два подобных, можно задачу решать через подобие.
2) в вершину этого треугольника, которая является общим концом медианы и высоты (то есть - вершиной треугольника, который надо построить) ставится циркуль и проводится окружность с заданным радиусом (описанной окружности).
(Это уже вторая окружность с центром в этой точке :))
3) через другой конец медианы (то есть - через середину "будущей стороны") проводится прямая параллельно высоте (то есть - перпендикулярно "будущей стороне). Центр описанной окружности лежит на пересечении этой прямой (медиатриссы) с окружностью, построенной в пункте 2)
(Потому что центр описанной окружности равноудален от концов "будущей стороны" и находится на заданном расстоянии от вершины)
4) теперь просто рисуется описанная окружность, и катет построенного в пункте 1) треугольника, (то есть кусок "будущей стороны", который заключен между медианой и высотой) продолжается в обе стороны до пересечения с ней.
5) все вершины треугольника найдены, то есть он построен.
Примечание. Окружность в 2) и медиатрисса в 3) могут пересекаться в двух точках, и в принципе, тут получается некая неоднозначность. Наличие двух возможных решений - не недостаток :). Я думаю, автор задачи легко рассмотрит варианты, когда есть 1 решение, когда 2, а когда и вообще нет.