Внутри угла bac, равного 120 градусов, проведён луч ak. внутри три угла bak проведён луч am, угол mak равен 40 градусов. найдите угол между биссектрисами углов bam и cak. )
Во-первых, только равнобочную трапецию можно вписать в окружность, это значит, что боковые стороны трапеции равны, и углы при основании равны. 1) пусть дана трапеция abcd. пусть меньшее основание = а, большее основание = b. тогда (a+b)/2 = 6 см. 2) проведем диагональ bd и опустим высоты bh и ct. т.к. трапеция равнобочная, то ah = (b-a)/2, тогда dh = b - ( (b-a)/2 ) = (2b - b + a)/2 = (b+a)/2 = 6 см. 3) рассмотрим прямоугольный треуг-к hdb. tg(60 градусов) = bh/dh, bh = tg(60 гр)*dh = sqrt(3)*6 см, т.е. нашли высоту.
22см - 12 см = 10 см Это означает, что на прямой строим рядом два отрезка по 11 см, получим отрезок АВ = 22 см 11 см * 2 = 22 см затем на этом отрезке АВ от его начала откладываем три отрезка по 4 см, отметим точку К. АК = 4 см * 3 = 12 см Оставшийся отрезок КВ = 22 см - 12 см = 10 см ответ : КВ = 10 см
4см 4см 4см 10см
А||КВ
11см | 11см
22см - 12 см = 10 см
Это означает, что на прямой строим рядом два отрезка по 11 см, получим отрезок АВ = 22 см
11 см * 2 = 22 см
затем на этом отрезке АВ от его начала откладываем три отрезка по 4 см, отметим точку К.
АК = 4 см * 3 = 12 см
Оставшийся отрезок КВ = 22 см - 12 см = 10 см
ответ : КВ = 10 см