Дано: AB = BC = CD = AD = 16 см, ∠BAD = 30°, ∠KHO = 60°, KH ⊥ AB,
OH ⊥ AB, KO ⊥ ABC, KABCD - піраміда
Знайти: KO, S_{bp}S
bp
- ?
Розв'язання: Так як основою піраміди KABCD є ромб ABCD за умовою і всі двогранні кути піраміди рівні, то точка O - є точкою перетину діагоналей ромба. За властивістю ромба його діагоналі перетинаються під кутом 90° і точкою перетину діляться навпіл, отже AO = OC, DO = OB. Так як трикутники ΔAOB, ΔCOB, ΔCOD і ΔAOD - прямокутні, пр цоьму AO = OC, DO = OB, от за формулою площі прямокутного трикутника:
S_{зAOB} = S_{зCOB} = S_{зCOD} = S_{зAOD}S
зAOB
=S
зCOB
=S
зCOD
=S
зAOD
, отже S_{ABCD} = 4S_{зAOB}S
ABCD
=4S
зAOB
.
Так як за умовою OH ⊥ AB, то OH - висота трикутника ΔAOB, отже
S_{зAOB} = \dfrac{OH \cdot AB}{2}S
зAOB
=
2
OH⋅AB
. За формулою площі ромба: S_{ABCD} = AB^{2} \sin \angle BADS
ABCD
=AB
2
sin∠BAD .
4S_{зAOB} = AB^{2} \sin \angle BAD4S
зAOB
=AB
2
sin∠BAD
\dfrac{4OH \cdot AB}{2} = AB^{2} \sin \angle BAD
2
4OH⋅AB
=AB
2
sin∠BAD
2OH \cdot AB = AB^{2} \sin \angle BAD|:2AB2OH⋅AB=AB
Раз восьмиугольник правильный, значит все его стороны равны и все углы тоже. Угол такого восьмиугольника можно найти по формуле (где n - количество углов):
градусов, значит, каждый угол восьмиугольника равен 135 градусов. Рассмотрим четырёхугольник АВСН, в нём два угла по 135 градусов и два по х градусов (АВ параллельна СН так как точки А и В равноудалены от точек С и Н, это получилась равнобедренная трапеция). В выпуклом четырёхугольнике сумма углов равна 360 градусов, таким образом 2х=90 градусов, следовательно, х=45 градусов. Отсюда мы можем найти углы DСН и GНС, которые равны по 135-х=90 градусов. Аналогично углы СDG и DGН равны по 90 градусов, значит, CDGH - прямоугольник. Одна сторона этого прямоугольника равна стороне восьмиугольника, теперь найдём вторую. Для этого опустим в трапеции АВСН высоты и . . , потому что получился прямоугольник, а
KP=4
3
см
S_{bp} = 256S
bp
=256 см²
Объяснение:
Дано: AB = BC = CD = AD = 16 см, ∠BAD = 30°, ∠KHO = 60°, KH ⊥ AB,
OH ⊥ AB, KO ⊥ ABC, KABCD - піраміда
Знайти: KO, S_{bp}S
bp
- ?
Розв'язання: Так як основою піраміди KABCD є ромб ABCD за умовою і всі двогранні кути піраміди рівні, то точка O - є точкою перетину діагоналей ромба. За властивістю ромба його діагоналі перетинаються під кутом 90° і точкою перетину діляться навпіл, отже AO = OC, DO = OB. Так як трикутники ΔAOB, ΔCOB, ΔCOD і ΔAOD - прямокутні, пр цоьму AO = OC, DO = OB, от за формулою площі прямокутного трикутника:
S_{зAOB} = S_{зCOB} = S_{зCOD} = S_{зAOD}S
зAOB
=S
зCOB
=S
зCOD
=S
зAOD
, отже S_{ABCD} = 4S_{зAOB}S
ABCD
=4S
зAOB
.
Так як за умовою OH ⊥ AB, то OH - висота трикутника ΔAOB, отже
S_{зAOB} = \dfrac{OH \cdot AB}{2}S
зAOB
=
2
OH⋅AB
. За формулою площі ромба: S_{ABCD} = AB^{2} \sin \angle BADS
ABCD
=AB
2
sin∠BAD .
4S_{зAOB} = AB^{2} \sin \angle BAD4S
зAOB
=AB
2
sin∠BAD
\dfrac{4OH \cdot AB}{2} = AB^{2} \sin \angle BAD
2
4OH⋅AB
=AB
2
sin∠BAD
2OH \cdot AB = AB^{2} \sin \angle BAD|:2AB2OH⋅AB=AB
2
sin∠BAD∣:2AB
OH = \dfrac{AB\cdot \sin \angle BAD}{2} = \dfrac{16 \cdot 0,5}{2} = 8 \cdot 0,5 = 4OH=
2
AB⋅sin∠BAD
=
2
16⋅0,5
=8⋅0,5=4 см.
Розглянемо прямокутний трикутник ΔKOH:
tg \ \angle KHO = \dfrac{KO}{OH} \Longrightarrow KO = OH \cdot tg \ \angle KHO = 4 \cdot tg(60^{\circ}) = 4\sqrt{3}tg ∠KHO=
OH
KO
⟹KO=OH⋅tg ∠KHO=4⋅tg(60
∘
)=4
3
см.
Так як усі грані піраміди рівні за площею трикутники, то
S_{bp} = 4S_{зKAB} = \dfrac{4KH \cdot AB}{2} = 2KH \cdot AB = \dfrac{2 \cdot AB \cdot OH}{\cos \angle KHO} = \dfrac{2 \cdot 16 \cdot 4}{\cos 60^{\circ}} =S
bp
=4S
зKAB
=
2
4KH⋅AB
=2KH⋅AB=
cos∠KHO
2⋅AB⋅OH
=
cos60
∘
2⋅16⋅4
=
=\dfrac{128}{0,5} = 256=
0,5
128
=256 см²
градусов, значит, каждый угол восьмиугольника равен 135 градусов. Рассмотрим четырёхугольник АВСН, в нём два угла по 135 градусов и два по х градусов (АВ параллельна СН так как точки А и В равноудалены от точек С и Н, это получилась равнобедренная трапеция). В выпуклом четырёхугольнике сумма углов равна 360 градусов, таким образом 2х=90 градусов, следовательно, х=45 градусов. Отсюда мы можем найти углы DСН и GНС, которые равны по 135-х=90 градусов. Аналогично углы СDG и DGН равны по 90 градусов, значит, CDGH - прямоугольник. Одна сторона этого прямоугольника равна стороне восьмиугольника, теперь найдём вторую.
Для этого опустим в трапеции АВСН высоты и . . , потому что получился прямоугольник, а
Таким образом стороны прямоугольника равны АВ и