В основании лежит правильный треугольник, площадь которого S=a²√3/4=8²√3/4=16√3см².
Высота правильного треугольника: h=a√3/2= 8√3/2=4√3см.
Точка, на которую опущена высота, является серединой правильного треугольника (точка пересечения медиан). Эти медианы делятся в отношении 2:1 от вершины.
AO=2×4√3/3=8√3/3.
Рассмотрим треугольник AOS, у которого O=90°, A=S=45°. Если два угла равны 45°, то их катеты равны. Значит, высота пирамиды равна 8√3/3.
кут E=120°
кут F=120°
кут N=60°
кут F=60°
Объяснение:
эта трапеция равнобедренная (NE=FM), это можно сказать ещё с условия задачи
точкой O я пометила точку пересечения EM и NF
они являются диагонали, бисектрисами и и высотами
кут NOM равен 120° за условием, значит кут EOF тоже равен 120° (как вертикальные куты), а кут EON равен 60°
рассмотрим треугольник NOM
в нём кут N=M=(180°-120°)/2=30°
рассмотрим треугольник EOF
в нём кут E=куту F=(180°-120°)/2=30°
рассмотрим треугольник NEO
в треугольнику NEO кут E=90°
значит треугольник прямоугольный
кут O=60°
кут N=30°
продолжим рассматривать трапецию
в ней кут N=куту M=кут ENO+кут ONM=30°+30°=60°
кут E=куту F=кут NEO+кут OEF=90°+30°=120°
Дано:
SABC - пирамида
SО - высота
AB=8см
ã=45°
V-?
Объем пирамиды: V=1/3×Sосн×h
В основании лежит правильный треугольник, площадь которого S=a²√3/4=8²√3/4=16√3см².
Высота правильного треугольника: h=a√3/2= 8√3/2=4√3см.
Точка, на которую опущена высота, является серединой правильного треугольника (точка пересечения медиан). Эти медианы делятся в отношении 2:1 от вершины.
AO=2×4√3/3=8√3/3.
Рассмотрим треугольник AOS, у которого O=90°, A=S=45°. Если два угла равны 45°, то их катеты равны. Значит, высота пирамиды равна 8√3/3.
Найдем объем:
V=1/3×16√3×8√3/3=128/3 см³