Відомо, що коло, вписане в трикутник, точками дотику до сторін відділяє рівні відрізки зі сторони кожної вершини.
Також відомо, що висоти - радіуси, проведені із центра такого кола в прямокутному трикутнику до катетів утворюють з відрізками від точок дотику до вершини прямого кута квадрат зі стороною, рівною радіусу вписаного кола.
Згідно з умовою, позначимо AF як 2x, FB як 3x, тоді
Если построить на стороне ВС, как на диаметре, окружность, и провести касательную к ней параллельно ВС, то все точки этой касательной будут лежать на одинаковом расстоянии от прямой ВС (от всей прямой, не только отрезка, но и продолжения), равном половине ВС. Поэтому эта касательная - это геометрическое место возможных вершин А. Ясно, все точки этой прямой, за исключением точки касания, лежат за пределами окружности. Легко показать, что если вершина А не совпадает с точкой касания, то угол А меньше прямого. Для этого достаточно соединить точку С с точкой пересечения окружности и АВ, пусть это точка Е, при этом получится прямой угол ВЕС, и заметить, что этот прямой угол равен сумме угла А и угла АВЕ, не равного 0. Поэтому максимальное значение угла А равно 90 градусам, когда точка А - это касательная к этой окружности. Треугольник ВСА при этом равнобедренный.
Відповідь:
3 см
Пояснення:
Відомо, що коло, вписане в трикутник, точками дотику до сторін відділяє рівні відрізки зі сторони кожної вершини.
Також відомо, що висоти - радіуси, проведені із центра такого кола в прямокутному трикутнику до катетів утворюють з відрізками від точок дотику до вершини прямого кута квадрат зі стороною, рівною радіусу вписаного кола.
Згідно з умовою, позначимо AF як 2x, FB як 3x, тоді
r=9-2x
За теоремою Піфагора складемо рівняння:
9²+ (9-2х+3х)²=(2х+3х)²
81+(9+х)²=25х²
81+81+18х+х²-25х²=0
24х²-18х-162=0
4х²-3х-27=0
Дискрімінант: Д=9+4*4*27=441=21²
х₁=(3+21)/8=3 см
х₂=(3-21)/8=-2.25 см (не підходить).
Тоді r=9-2·3=3 см
Поэтому максимальное значение угла А равно 90 градусам, когда точка А - это касательная к этой окружности. Треугольник ВСА при этом равнобедренный.