1) Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора АВ
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 9-5; Y = 3-(-1); Z = -6-4
АВ(4;4;-10), АС(2;11;-18), АД(0;2;-7).
2) Угол а между векторами АВ и АС равен.
Модули: АВ =√(16 + 16 + 100) = √132 = 2√33.
АС = √(4 + 121 + 324) = √449
cos a = (4*2 + 4*11 + (-10)*(-18))/(√132*√449) = (8 + 44 + 180)/(59268) = 232/243,4502 = 0,952967.
а = arc cos 0,952967 = 0,307917 радиан = 17,642339 градуса.
3) Проекция вектора АД на вектор АВ.
Решение: Пр ba = (a · b)/|b|.
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bz = 0 · 4 + 2 · 4 + (-7) · (-10) = 0 + 8 + 70 = 78
Модуль вектора b = АВ определён и равен √132 = 2√33.
Пр ba = 78/(2√33) = 13√33 / 11 ≈ 6.78903.
4) Площадь грани АВС равна половине модуля векторного произведения векторов АВ и АС.
Векторное произведение:
i j k
4 4 -10
2 11 -18
= i(4(-18)-11(-10)) - j(4(-18)-2(-10)) + k(4*11-2*4) = 38i + 52j + 36k.
S = (1/2)√√(38² + 52² + 36²) = (1/2)√(1444 + 2704 + 1296) = √5444 ≈ 36,89173.
5) Объем пирамиды АВСД равен (1/6) смешанного произведения векторов (АВ х АС) х АД.
(АВ х АС) = (38; 52; 36), АД(0;2;-7) - определено выше.
(АВ х АС) х АД = |38*0 + 52*2 + 36*(-7)| = 148
S = (1/6)*148 = 24,6667.
Пусть MP=x, NQ=y треугольник MPQ прямоугольный так как MP диаметр.
По теореме о секущей LQ^2=y*(y+16) из условия
P=MP+PQ+MQ=2MP+LQ+NQ+MN=2x+y+√(y(y+16))+16=72 или
sqrt(y(y+16))+y+2x=56
По теореме Пифагора x^2+(16+y)^2=(√(y*(y+16))+x)^2
Система
{√(y(y+16))+y+2x=56
{x^2+(16+y)^2=(√(y*(y+16))+x)^2
(√(y(y+16))+x)^2=(56-y-x)^2
приравнивая со вторым
(56-(y+x))^2=x^2+256+32y+y^2
56^2-112(x+y)+2xy=256+32y
x = (72(y-20)/(y-56))
Подставляя в первое уравнение системы
√(y(y+16))+y+(144(y-20)/(y-56)) = 56
или
(y(y+16)) - (56 - (y+(144(y-20)/(y-56^2 = 0
32(y+16)(y-2)(5y-64)=.
y=2, y=64/5
при y=64/5 , x<15
при y=2, x=24>15
Значит S(MPQ) = x(16+y)/2 = 24*18/2 = 216
1) Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора АВ
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 9-5; Y = 3-(-1); Z = -6-4
АВ(4;4;-10), АС(2;11;-18), АД(0;2;-7).
2) Угол а между векторами АВ и АС равен.
Модули: АВ =√(16 + 16 + 100) = √132 = 2√33.
АС = √(4 + 121 + 324) = √449
cos a = (4*2 + 4*11 + (-10)*(-18))/(√132*√449) = (8 + 44 + 180)/(59268) = 232/243,4502 = 0,952967.
а = arc cos 0,952967 = 0,307917 радиан = 17,642339 градуса.
3) Проекция вектора АД на вектор АВ.
Решение: Пр ba = (a · b)/|b|.
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bz = 0 · 4 + 2 · 4 + (-7) · (-10) = 0 + 8 + 70 = 78
Модуль вектора b = АВ определён и равен √132 = 2√33.
Пр ba = 78/(2√33) = 13√33 / 11 ≈ 6.78903.
4) Площадь грани АВС равна половине модуля векторного произведения векторов АВ и АС.
Векторное произведение:
i j k
4 4 -10
2 11 -18
= i(4(-18)-11(-10)) - j(4(-18)-2(-10)) + k(4*11-2*4) = 38i + 52j + 36k.
S = (1/2)√√(38² + 52² + 36²) = (1/2)√(1444 + 2704 + 1296) = √5444 ≈ 36,89173.
5) Объем пирамиды АВСД равен (1/6) смешанного произведения векторов (АВ х АС) х АД.
(АВ х АС) = (38; 52; 36), АД(0;2;-7) - определено выше.
(АВ х АС) х АД = |38*0 + 52*2 + 36*(-7)| = 148
S = (1/6)*148 = 24,6667.
Пусть MP=x, NQ=y треугольник MPQ прямоугольный так как MP диаметр.
По теореме о секущей LQ^2=y*(y+16) из условия
P=MP+PQ+MQ=2MP+LQ+NQ+MN=2x+y+√(y(y+16))+16=72 или
sqrt(y(y+16))+y+2x=56
По теореме Пифагора x^2+(16+y)^2=(√(y*(y+16))+x)^2
Система
{√(y(y+16))+y+2x=56
{x^2+(16+y)^2=(√(y*(y+16))+x)^2
(√(y(y+16))+x)^2=(56-y-x)^2
приравнивая со вторым
(56-(y+x))^2=x^2+256+32y+y^2
56^2-112(x+y)+2xy=256+32y
x = (72(y-20)/(y-56))
Подставляя в первое уравнение системы
√(y(y+16))+y+(144(y-20)/(y-56)) = 56
или
(y(y+16)) - (56 - (y+(144(y-20)/(y-56^2 = 0
32(y+16)(y-2)(5y-64)=.
y=2, y=64/5
при y=64/5 , x<15
при y=2, x=24>15
Значит S(MPQ) = x(16+y)/2 = 24*18/2 = 216