Нарисуем пирамиду, проведем в ней сечение KLNM. Рассмотрим треугольники ВАС и КАМ.
Они подобны, т.к. МК параллельна СВ, углы в них равны- один общий А, другие по свойству углов при пересечении параллельных прямых секущей. АК:КВ=1:3 Отсюда АВ:АК=4:1 СВ:КМ=4:1 МК=8:4=2 см NL=MK=2 cм Рассмотрим треугольники SBA и KBL Они также подобны: в них равны- один общий угол В, другие по свойству углов при пересечении параллельных прямых секущей. АВ:АК=3:1 по условию задачи ВК:АВ=3:4 KL:AS=3:4 KL:4=3:4 KL=NM= 3 см Периметр сечения равен Р=2(3+2)=10 см
Площадь трапеции равна произведению полусуммы ее оснований на высоту.
У задачи есть два случая.
Первый случай, когда основание, равное 10 - меньшее.
Второй случай, когда основание, равное 10 - большее.
Рассмотрим рисунки.
Для первого случая:
Чтобы найти величину неизвестного основания АD, нужно найти х=АМ.
АМ-катет прямоугольного ΔАВМ, с извесной гипотенузой АВ=5 и катетом ВМ=4 (высота трапеции). АМ=√(АВ²-ВМ²)=√(25-16)=3
Т.к. АВ=СD и ВМ=СМ, а также ∠А=∠D и ∠АМВ=∠DNC, то ΔАВМ=ΔDNC и, соответственно, x=АМ=ND=3.
Т.к. основания трапеции параллельны, то высоты, опущенные из вершин верхнего основания ВС на нижнее, образуют прямоугольник со сторонами ВС=МN=10 и ВМ=СМ=4.
Основаниие АD=AM+MN+ND=MN+2·x
Тогда АD=10+2·3=16.
Тогда площадь такой трапеции S₁=BM·(BC+AD)÷2=4·(10+16)÷2=52 ед.²
Для второго случая:
Чтобы найти величину неизвестного основания ВС=10-2х=10-2·3=4
Тогда площадь такой трапеции S₂=BM·(BC+AD)÷2=4·(4+10)÷2=28 ед.²
ответ: если меньшее основание трапеции равно 10 , то S₁=52 ед.²;
если большее основание трапеции равно 10, то S₂=28 ед.²
Нарисуем пирамиду, проведем в ней сечение KLNM.
Рассмотрим треугольники ВАС и КАМ.
Они подобны, т.к. МК параллельна СВ, углы в них равны- один общий А, другие по свойству углов при пересечении параллельных прямых секущей.
АК:КВ=1:3
Отсюда АВ:АК=4:1
СВ:КМ=4:1
МК=8:4=2 см
NL=MK=2 cм
Рассмотрим треугольники SBA и KBL
Они также подобны: в них равны- один общий угол В, другие по свойству углов при пересечении параллельных прямых секущей.
АВ:АК=3:1 по условию задачи
ВК:АВ=3:4
KL:AS=3:4
KL:4=3:4
KL=NM= 3 см
Периметр сечения равен
Р=2(3+2)=10 см
Площадь трапеции равна произведению полусуммы ее оснований на высоту.
У задачи есть два случая.
Первый случай, когда основание, равное 10 - меньшее.
Второй случай, когда основание, равное 10 - большее.
Рассмотрим рисунки.
Для первого случая:
Чтобы найти величину неизвестного основания АD, нужно найти х=АМ.
АМ-катет прямоугольного ΔАВМ, с извесной гипотенузой АВ=5 и катетом ВМ=4 (высота трапеции). АМ=√(АВ²-ВМ²)=√(25-16)=3
Т.к. АВ=СD и ВМ=СМ, а также ∠А=∠D и ∠АМВ=∠DNC, то ΔАВМ=ΔDNC и, соответственно, x=АМ=ND=3.
Т.к. основания трапеции параллельны, то высоты, опущенные из вершин верхнего основания ВС на нижнее, образуют прямоугольник со сторонами ВС=МN=10 и ВМ=СМ=4.
Основаниие АD=AM+MN+ND=MN+2·x
Тогда АD=10+2·3=16.
Тогда площадь такой трапеции S₁=BM·(BC+AD)÷2=4·(10+16)÷2=52 ед.²
Для второго случая:
Чтобы найти величину неизвестного основания ВС=10-2х=10-2·3=4
Тогда площадь такой трапеции S₂=BM·(BC+AD)÷2=4·(4+10)÷2=28 ед.²
ответ: если меньшее основание трапеции равно 10 , то S₁=52 ед.²;
если большее основание трапеции равно 10, то S₂=28 ед.²