Вокружности проведены две пересекающиеся хорды ab и cd, при этом хорда авразделилась пополам, а хорда cd длиной 15 см разделилась на отрезки в отношении 1 : 4. найдите длину хорды ав
Решение данной задачи основано на теореме об угле, образованного пересекающимися хордами. Такой угол равен половине суммы дуг, заключенных между его сторонами. Рисуем окружность. Произвольно чертим хорды с учетом на то, что отношение двух дуг = 1:3. Тогда составляем уравнение 60 градусов = (1х+3х)/2 где 1 и 3 - заданные условием задачи части; х - градусная мера 1 части. Отсюда х= 60*2/4 = 30 градусов - это градусная мера меньшей дуги АС 30 градусов *3 = 90 градусов - это градусная мера большей дуги ДВ Проверяем правильность решения: На дугу в 30 градусов опирается вписанный угол В, который равен = 1/2 дуги АС равной 30 => угол В = 15 На дугу в 90 градусов опирается угол В = 1/2 дуги ДВ равную 90 => угол Д = 45 Следовательно сумма углов треугольника АОВ = 45+15+120 =180, где О центр пересечения хорд Задача решена ответ: градусная мера дуг, заключенных между сторонами угла 60 градусов равна 30 и 90 градусам.
По свойству отрезков касательных к окружности ,проходящих через одну точку,имеем,что углы,которые они образуют с прямой,проходящей через эту точку и центр окружности равны. Соединим центр окружности с вершинами тупого и острого углов. Получаем прямоугольный треугольник с прямым углом в центре окружности,поскольку сумма углов,прилежащих к боковой стороне,равна 180(острые углы треугольники - углы при биссектрисах острого и тупого углов трапеции). h треуг=r.(через Т.Пифагора доказывается среднее геом.проекций катетов на гип.) r=V(25*4)=10. В трапеции 2r=h,а в прямоуг.трап. ещё и h=меньшая боковая Следовательно,боковая 2*10=20. Значит,суммы противоположных 29+20=49. Окружность касается боковой стороны в серединах, значит,части 10 и 10. По св-ву отрезков касательных,получаем,меньшая - 14, большая - 35 S=(35+14)\2*20=490 ответ:490
Рисуем окружность. Произвольно чертим хорды с учетом на то, что отношение двух дуг = 1:3. Тогда составляем уравнение
60 градусов = (1х+3х)/2
где 1 и 3 - заданные условием задачи части; х - градусная мера 1 части.
Отсюда
х= 60*2/4 = 30 градусов - это градусная мера меньшей дуги АС
30 градусов *3 = 90 градусов - это градусная мера большей дуги ДВ
Проверяем правильность решения:
На дугу в 30 градусов опирается вписанный угол В, который равен = 1/2 дуги АС равной 30 => угол В = 15
На дугу в 90 градусов опирается угол В = 1/2 дуги ДВ равную 90 =>
угол Д = 45
Следовательно сумма углов треугольника АОВ = 45+15+120 =180, где О центр пересечения хорд
Задача решена
ответ: градусная мера дуг, заключенных между сторонами угла 60 градусов равна 30 и 90 градусам.
Соединим центр окружности с вершинами тупого и острого углов.
Получаем прямоугольный треугольник с прямым углом в центре окружности,поскольку сумма углов,прилежащих к боковой стороне,равна 180(острые углы треугольники - углы при биссектрисах острого и тупого углов трапеции).
h треуг=r.(через Т.Пифагора доказывается среднее геом.проекций катетов на гип.)
r=V(25*4)=10.
В трапеции 2r=h,а в прямоуг.трап. ещё и h=меньшая боковая
Следовательно,боковая 2*10=20.
Значит,суммы противоположных 29+20=49.
Окружность касается боковой стороны в серединах,
значит,части 10 и 10.
По св-ву отрезков касательных,получаем,меньшая - 14,
большая - 35
S=(35+14)\2*20=490
ответ:490