1) Пусть т.Д - пересечение АС и ВР. ВД=ДО по условию, значит в треугольнике ВСО: ВС=СО. Но СО=ВО=r, значит треугольник ВСО равносторонний, значит угол ОВС=60, значит угол АВС=2*ОВС=2*60=120.
Во вписанном 4-угольнике сумма противоположных углов равна 180. Значит АРС=180-АВС=180-120=60.
Углы ВСР и ВАР = 90, как опирающиеся на диаметр.
2) Диаметр, перпендикулярный хорде, делит ее и стягиваемые ею дуги пополам. Значит дуги АВ=ВС=угол ВОС=60
дуги АР=СР=угол СОР=180-ВОС=180-60=120
Пусть H - середина ABCD, MH - высота пирамиды MABCD,
MH - медиана, биссектриса и высоты треугольника DBM => H - середина DB=> HL - средняя линия треугольника DMB => 2LH=DH;
AH перпендикулярно BD ( как диагонали квадрата),
AH перпендикулярно МH ( т.к. МH - высота пирамиды)
DB пересекает MH в точке H => AH перпендикулярна плоскости DMB, значит угол HLA = 60° (по условию),
CA = √(CB^2+AB^2)=6√2 (по теореме Пифагора)
HA=1/2CA=3√2
LM=AH/tg60° = √6
DM=2LM=2√6
MH=√(DM^2-DH^2)=√6 (по теореме Пифагора)
ответ: √6
1) Пусть т.Д - пересечение АС и ВР. ВД=ДО по условию, значит в треугольнике ВСО: ВС=СО. Но СО=ВО=r, значит треугольник ВСО равносторонний, значит угол ОВС=60, значит угол АВС=2*ОВС=2*60=120.
Во вписанном 4-угольнике сумма противоположных углов равна 180. Значит АРС=180-АВС=180-120=60.
Углы ВСР и ВАР = 90, как опирающиеся на диаметр.
2) Диаметр, перпендикулярный хорде, делит ее и стягиваемые ею дуги пополам. Значит дуги АВ=ВС=угол ВОС=60
дуги АР=СР=угол СОР=180-ВОС=180-60=120
Пусть H - середина ABCD, MH - высота пирамиды MABCD,
MH - медиана, биссектриса и высоты треугольника DBM => H - середина DB=> HL - средняя линия треугольника DMB => 2LH=DH;
AH перпендикулярно BD ( как диагонали квадрата),
AH перпендикулярно МH ( т.к. МH - высота пирамиды)
DB пересекает MH в точке H => AH перпендикулярна плоскости DMB, значит угол HLA = 60° (по условию),
CA = √(CB^2+AB^2)=6√2 (по теореме Пифагора)
HA=1/2CA=3√2
LM=AH/tg60° = √6
DM=2LM=2√6
MH=√(DM^2-DH^2)=√6 (по теореме Пифагора)
ответ: √6