Из условия AA1 = BB1 = CC1 = DD1 = 2AB = 2BC = 2CD = 2AD. Высота правильной призмы равна ее высоте AA1. AA1 = 8см, AB = AA1/2 = 4 см. Поскольку AF = AB и BC = CP = 4 см, то стороны треугольника BF и BP равны 8 см. Чтобы найти площадь основания пирамиды, нужно найти площадь прямоугольного треугольника FBP с прямым углом B. Площадь прямоугольного треугольника можно выразить через катеты, то есть S = (FB*BP)/2, S = (8*8)/2 = 64/2 = 32 см^2.
Объем пирамиды: V = (S(BFP)*BB1)/3, V = (32*8)/3 = 256/3 см^3
2) Діагональ квадрата d= * а ; 8= * а ; а= 8 / ; тобто сторона квадрата дорівнює 8 / ; а площа звичайно сторону помножити на сторону ( 8 / ) * ( 8 / ) = 64/2 (верх множимо на верх а низ множимо на низ).
Дорівнює 32 (тобто В)
3) площа прямокутника це сторона помножена на іншу сторону
6 * 4 = 24
Відповідь - Г
4) Нам потрібно узнати невідому сторону.. по закону АРХІМЕДА ( квадрат діагоналі дорівнює сумі квадратів сторін)
= + ; - = ; = - ; х = ; х= ; х=4
= +
Тобто сторони у нас = 3, та 4. А діагональ між ними = 5
Задание: 3
Из условия AA1 = BB1 = CC1 = DD1 = 2AB = 2BC = 2CD = 2AD. Высота правильной призмы равна ее высоте AA1. AA1 = 8см, AB = AA1/2 = 4 см. Поскольку AF = AB и BC = CP = 4 см, то стороны треугольника BF и BP равны 8 см. Чтобы найти площадь основания пирамиды, нужно найти площадь прямоугольного треугольника FBP с прямым углом B. Площадь прямоугольного треугольника можно выразить через катеты, то есть S = (FB*BP)/2, S = (8*8)/2 = 64/2 = 32 см^2.
Объем пирамиды: V = (S(BFP)*BB1)/3, V = (32*8)/3 = 256/3 см^3
1- (Б)
2- (В)
3 - (Г)
4- (Б)
Объяснение:
1) Площа квадрата = а * а
Якщо а=6; 6*6=36 (Б)
2) Діагональ квадрата d= * а ; 8= * а ; а= 8 / ; тобто сторона квадрата дорівнює 8 / ; а площа звичайно сторону помножити на сторону ( 8 / ) * ( 8 / ) = 64/2 (верх множимо на верх а низ множимо на низ).
Дорівнює 32 (тобто В)
3) площа прямокутника це сторона помножена на іншу сторону
6 * 4 = 24
Відповідь - Г
4) Нам потрібно узнати невідому сторону.. по закону АРХІМЕДА ( квадрат діагоналі дорівнює сумі квадратів сторін)
= + ; - = ; = - ; х = ; х= ; х=4
= +
Тобто сторони у нас = 3, та 4. А діагональ між ними = 5
Площа дорівнює 3 * 4 = 12
Відповідь - Б