ВОПРОСЫ 1. Объясните, почему синус и косинус любого острого угла меньше еди- НИЦЫ. 2. Докажите, что меньшему острому углу соответствует: а) меньшее значение его синуса; б) большее значение его косинуса. 3. Чему равны значения синуса, косинуса и тангенса углов 30°, 45°, 60°? Объясните, как можно найти эти значения.
2)Проведем из вершины C высоту CH1 к стороне AD, затем AH и H1D обозначим буквой x, они будут являться катетами прямоугольных треугольников ABH и CH1D.
3)Составим уравнение AD=BC+2x, т.к. HH1=BC
2x=AD-BC
x=21
4) Рассмотрим треугольник ABH:
AB=29( по условию);
AH=21( по доказанному);
AB^2= AH^2+BH^2
BH^2=841-441
BH=20
5)S= 0.5* ( 7+49) * 20
S=560
ответ: 560
Объяснение:
1.Угол, вершина которого лежит в центре окружности называется
А) центральным;
2. Угол, вершина которого лежит на окружности называется
Б) вписанным;
3. Вписанный угол равен
В) половине дуги на которую он опирается.
4. Центральный угол равен
Б) дуге, на которую он опирается;
5. Чему равен вписанный угол, опирающийся на дугу в 120°
Б) 60°;
6. Чему равен центральный угол, опирающийся на дугу в 40°
В) 40°
7. Чему равен вписанный угол, опирающийся на дугу в 100°
А) 50°;
8.Чему равен центральный угол, опирающийся на дугу в 80°
Б) 80°;
Запишите ответ (задания 9-12):
9. Найдите <DEF, если градусные меры дуг DE и EF равны 150° и 68° соответственно.
<DEF опирaтeся на дугу = 360°-(DE + EF)=360°-( 150° + 68° ) =142°.
<DEF - вписанный угол,
<DEF=1/2×142°=71°
10. Найдите <KOM, если известно, что градусная мера дуги MN равна 124°, а градусная мера дуги KN равна 180°. Точка O — центр окружности.
υMK=υKN-υMN=180°-124°=56°
<KOM - центральный угол,<KOM=56°
11. Треугольник ABC вписан в окружность с центром в точке O. Найдите градусную меру угла C треугольника ABC, если угол AOB равен 48°.
<C - вписанный угол,= половине центральнoго углa AOB.
<C=1/2<AOB=1/2*48°=24°
12. Точка О — центр окружности, <AOB = 84° (см. рисунок). Найдите величину угла ACB (в градусах). Дай рисунок.