Вопросы к зачету по теме «Окружность» 1. Определение касательной к окружности.
2. Свойство касательной к окружности.
3. Свойство отрезков касательных, проведенных из одной точки.
4. Определение центрального угла.
5. Определение вписанного угла.
6. Теорема о вписанном угле.
7. Свойства вписанного угла.
8. Теорема о биссектрисе угла.
9. Теорема о серединном перпендикуляре к отрезку.
10. Четыре замечательные точки треугольника и их свойства.
11. Какая окружность называется вписанной в многоугольник?
12. Теорема об окружности, вписанной в треугольник.
13. Каким свойством обладают стороны четырехугольника, описанного около окружности?
14. Площадь треугольника через периметр и радиус вписанной окружности.
15. Какая окружность называется описанной около многоугольника.
16. Теорема об окружности, описанной около треугольника.
17. Каким свойством обладают углы четырехугольника, вписанного в окружность?
Теоремы (свойства параллелограмма):
В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.
р- полупериметр треугольника,
пусть АД=3,6 -проекция катета АС на гипотенузу АВ треугольника АВС,<C=90 гр, ДВ=АВ-АД= 10-3,6=6,4, СД перпендикулярна АВ,
находим катет СД из прямоугольных треугольников СДА иСДВ:
СД²=АС²-АД²=АС²-3,6²=АС²-12,96
СД²=ВС²-ДВ²=ВС²-6,4²=ВС²-40,96
АС²-12,96=ВС²-40,96, ВС²=АС²-12,96+40,96=АС²+28
из данного треугольника АВС находим АВ²=100=АС²+ВС²=АС²+АС²+28
2АС²=100-28=72, АС²=36, АС=6,ВС²=АВ²-АС²=100-36=64, ВС=8
Sтр=(ВС*АС)/2=(8*6)/2=24,р=(АВ+ВС+АС)/2= (10+8+6)/2=12
r= Sтр/р=24/12=2-искомый радиус