Объяснение: рассмотрим ∆АОС. Он тоже является равнобедренным, поскольку биссектрисы проведены из равных углов. Теперь вычислим углы ОАС и ОСА. Биссектрисы углов А и С
делят их пополам. Сумма углов в треугольнике равна 180° и поэтому:
180- 130=50. Сумма этих углов=50. Так как они равны: 50÷2=25. Угол ОАС= углу ОСА=25°. Так как угол А и С разделяют биссектрисы, то угол ВАО равен углу ВСО и тоже равны 25°. Следовательно угол А= углу С=50°. Теперь найдём угол В. Угол В = 180-50-50=80
Объяснение: проведём к основанию треугольника высоту Н. Она разделила треугольник на 2 прямоугольных треугольника, в котором боковая сторона становится гипотенузой 24см. Мы знаем, что угол при основе 30°. По свойствам угла 30°, катет, который лежит против него равен половине гипотенузы, значит проведённая высота = 24÷2=12. По теореме Пифагора найдём половину основания треугольника: 576 -144=432. Половина основания=√432. Основание = 2×√432. Зная высоту найдём площадь треугольника:
ответ: угол В=80
Объяснение: рассмотрим ∆АОС. Он тоже является равнобедренным, поскольку биссектрисы проведены из равных углов. Теперь вычислим углы ОАС и ОСА. Биссектрисы углов А и С
делят их пополам. Сумма углов в треугольнике равна 180° и поэтому:
180- 130=50. Сумма этих углов=50. Так как они равны: 50÷2=25. Угол ОАС= углу ОСА=25°. Так как угол А и С разделяют биссектрисы, то угол ВАО равен углу ВСО и тоже равны 25°. Следовательно угол А= углу С=50°. Теперь найдём угол В. Угол В = 180-50-50=80
ответ: S=6√432=72√3
Объяснение: проведём к основанию треугольника высоту Н. Она разделила треугольник на 2 прямоугольных треугольника, в котором боковая сторона становится гипотенузой 24см. Мы знаем, что угол при основе 30°. По свойствам угла 30°, катет, который лежит против него равен половине гипотенузы, значит проведённая высота = 24÷2=12. По теореме Пифагора найдём половину основания треугольника: 576 -144=432. Половина основания=√432. Основание = 2×√432. Зная высоту найдём площадь треугольника:
S=√432÷2×12=6√432 = 6×√16×√9×√3=
=6×4×3√3=72√3