Восновании прямой треугольной призмы авса1в1с1 лежит равнобедренный (ав=вс) треугольник авс. точки к и м-середины ребер а1в1 и ас соответственно. докажите что км=кв. найдите угол между поямой км и плоскостью авв1, если ав=8, ас=6, аа1=3
1. это геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки 2. это сумма длин всех его сторон 3.которые совпадают при наложении 4.это утверждения, справедливость которого устанавливается путем рассуждения. эти рассуждения и есть док-ва теоремы 5.это прямая, пересекающую другую прямую под углом 90 градусов 6.это отрезок соединяющий вершину треугольника с серединой противоположной стороны. 3 7.это прямая проходящая через вершину угла и делящая его пополам. 3 8. перпендикуляр проведенный из вершины к прямой,содержащей противоположную сторону.3 9.у которого две стороны равны 10.боковые 11.у которого все стороны равны 12. в равнобедренном треугольники углы при основании равны 13.биссектриса равнобедренного треугольника так же может являться и высотой, и медианой 14.если две стороны и угол между ними одного треугольника соответственно равны двум углам и углу между ними другого треугольника, то такие треугольники равны 15.если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны 16. если три стороны одного треугольника соответственно раны трем сторонам другого треугольника, то такие треугольники равны. 17. это геометрическая фигура состоящая из точек, равноудаленных от заданной точки 18. это точка, от которой расположены все точки окружности 19. отрезок соединяющий центр окружности с любой точкой окружности 20. это хорда проходящая через центр 21. это отрезок соединяющие любые две точки окружности
Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
2. это сумма длин всех его сторон
3.которые совпадают при наложении
4.это утверждения, справедливость которого устанавливается путем рассуждения. эти рассуждения и есть док-ва теоремы
5.это прямая, пересекающую другую прямую под углом 90 градусов
6.это отрезок соединяющий вершину треугольника с серединой противоположной стороны. 3
7.это прямая проходящая через вершину угла и делящая его пополам. 3
8. перпендикуляр проведенный из вершины к прямой,содержащей противоположную сторону.3
9.у которого две стороны равны
10.боковые
11.у которого все стороны равны
12. в равнобедренном треугольники углы при основании равны
13.биссектриса равнобедренного треугольника так же может являться и высотой, и медианой
14.если две стороны и угол между ними одного треугольника соответственно равны двум углам и углу между ними другого треугольника, то такие треугольники равны
15.если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны
16. если три стороны одного треугольника соответственно раны трем сторонам другого треугольника, то такие треугольники равны.
17. это геометрическая фигура состоящая из точек, равноудаленных от заданной точки
18. это точка, от которой расположены все точки окружности
19. отрезок соединяющий центр окружности с любой точкой окружности
20. это хорда проходящая через центр
21. это отрезок соединяющие любые две точки окружности
3. В окружность вписан треугольник ABC так, что АВ - диаметр окружности. Найдите углы треугольника, если: а) ВС=134°
АВ - диаметр - > < C=90 < A=67 (вписанный угол) < B=180-90-67=23
Билет № 3
3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12
S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4
3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника.
Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4.
В соответствии со свойством касательных, проведенных из одной точки к окружности
AM=AK CK=CN BM=BN
P=3+3+4+4+3+3=20