Восновании прямой треугольной призмы лежит прямоугольный треугольник с катетами 12 см и 5 см. гипотенуза основания призмы равна половине боковой стороны призмы. найдите площадь боковой поверхности призмы.
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
Если все боковые ребра наклонены под одним углом к основанию пирамиды, все боковые ребра равны, а вершина пирамиды проецируется в центр описанной около основания окружности. Центр окружности, описанной около прямоугольного треугольника лежит на середине гипотенузы, т.е. основанием высоты (SO) пирамиды явялется середина гипотенузы (AC) основания пирамиды. В прямоугольном треугольнике ABC: Катет AB = a ∠ABC = 90° ∠ACB = f Тангенсом ∠ACB явялется отношение противолежащего ему катета AB к прилежащему катету BC.
tg(ACB) = AB / BC BC = AB / tg(ACB) BC = a / tg(f)
Площадь основания пирамиды SABC: Sосн = 1/2 * AB * AC Sосн = 1/2 * a * a / tg(f) = a² / (2tg(f))
Синусом ∠ACB является отношение противолежащего ему катета AB к гипотенузе AC sin(ACB) = AB / AC AC = AB / sin(ACB) AC = a / sin(f)
CO = AC / 2 a CO = 1/2 * a/sin(f) = -------------- 2sin(f)
В прямоугольном треугольнике SOC: Катет CO = a / (2sin(f)) ∠SCO = β SO = H пирамиды Тангенсом ∠SCO является отношение противолежащего ему катета SO к прилежащему катету CO
tg(SCO) = SO / CO SO = CO * tg(SCO) SO = CO * tg β a * tg β SO = a / (2sin(f)) * tg β = ------------------- 2sin(f) Объем пирамиды V = 1/3 * Sосн * H
Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH.
Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции.
Sтрапеции=27+33/2 * 6 = 180 см^2
ответ:180 см^2
В прямоугольном треугольнике ABC:
Катет AB = a
∠ABC = 90°
∠ACB = f
Тангенсом ∠ACB явялется отношение противолежащего ему катета AB к прилежащему катету BC.
tg(ACB) = AB / BC
BC = AB / tg(ACB)
BC = a / tg(f)
Площадь основания пирамиды SABC:
Sосн = 1/2 * AB * AC
Sосн = 1/2 * a * a / tg(f) = a² / (2tg(f))
Синусом ∠ACB является отношение противолежащего ему катета AB к гипотенузе AC
sin(ACB) = AB / AC
AC = AB / sin(ACB)
AC = a / sin(f)
CO = AC / 2 a
CO = 1/2 * a/sin(f) = --------------
2sin(f)
В прямоугольном треугольнике SOC:
Катет CO = a / (2sin(f))
∠SCO = β
SO = H пирамиды
Тангенсом ∠SCO является отношение противолежащего ему катета SO к прилежащему катету CO
tg(SCO) = SO / CO
SO = CO * tg(SCO)
SO = CO * tg β
a * tg β
SO = a / (2sin(f)) * tg β = -------------------
2sin(f)
Объем пирамиды
V = 1/3 * Sосн * H
1 a² a * tg β a³ * tg β
V = --------- * ---------------- * --------------- = ----------------------------
3 2tg(f) 2sin(f) 12 * tg(f) * sin(f)