В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
открываем тетрадку, рисуем координатные оси, откладываем известные точки, вспоминаем что у параллелограма стороны попарно параллельны и откладываем недостающую точку - сводим точки как в детской раскрасске;
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).
ответ:
2; 5
объяснение:
открываем тетрадку, рисуем координатные оси, откладываем известные точки, вспоминаем что у параллелограма стороны попарно параллельны и откладываем недостающую точку - сводим точки как в детской раскрасске;
поздравляю, вы великолепны!
upd:
ищем координаты середины отрезка dc2. так как середина dc является и серединой ab;