Пусть данным расстоянием будет являться отрезок EO, а биссектриса пересекает сторону в точке C. Рассмотрим ΔMOE и Δ MOK. ∠MEO = ∠MKO = 90° (из условия задачи); ∠EMO = ∠KOM (т.к. MC - биссетриса); MO - общая гипотенуза у двух прямоугольный треугольников. Значит, ΔMOE = Δ MOK - по гипотенузе и острому углу. Из равенства треугольников ⇒ EO = OK = 9 см. ответ: 9 см.
Рассмотрим ΔMOE и Δ MOK.
∠MEO = ∠MKO = 90° (из условия задачи);
∠EMO = ∠KOM (т.к. MC - биссетриса);
MO - общая гипотенуза у двух прямоугольный треугольников.
Значит, ΔMOE = Δ MOK - по гипотенузе и острому углу.
Из равенства треугольников ⇒ EO = OK = 9 см.
ответ: 9 см.