Средняя линия делит трапецию на две трапеции с равной высотой. Обозначим основания трапеции через а и b, а среднюю линию через с. Проведем в каждой из новых трапеций среднюю линию - d и е. Отношение площадей трапеций S1/S2 = (d*h)/(e*h) = d/е Найдем средние линии трапеций. По условию: а: b = 7:11 отсюда: а = b*7/11 Средняя линия исходной трапеции: с = (а+b)/2 = (b*7/11 + b)/2 = b*9/11 Средние линии полученных трапеций: d = (а+с) /2 = (b*7/11 + b*9/11)/2 = b*8/11 е = (с+b)/2 = (b*9/11 + b)/2 =b*10/11 Отношение площадей: S1/S2 = d/е = (b*8/11)/(b*10/11) = (b*8*11)/(b*10*11) = 8/10 = 4/5 = 4:5 S1 : S2 = 4:5
Определение: Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой. Линейный угол двугранного угла - это угол, образованный двумя лучами, которые имеют общее начало, лежащее на ребре двугранного угла, и проведенными в обеих гранях перпендикулярно этому ребру. Обе плоскости сечения содержат в себе диагональ куба А1С, которая является линией их пересечения. Соотношение линейных величин у кубов одинаковы. Пусть данный куб единичный, где его ребро равно 1. Тогда его диагональ А1С по формуле диагонали куба равна √3, а диагональ его грани равна √2. А1С=√3 А1В=√2 Искомый угол ∠В1КН, где В1К - высота треугольник аА1В1С. В1Н - перпендикуляр из В1 на плоскость А1СВ, в частности, В1Н перпендикулярен А1В. Из треугольник аА1В1С найдем В1К. Треугольники А1В1С и КВ1С подобны. А1В1:В1К=А1С:В1С 1/В1К=√3/√2 Грани куба - равные квадраты. Диагонали квадрата перпендикулярны и точкой пересечения делятся пополам. В1Н ⊥ А1В, ⇒ является половиной диагонали грани куба и равна ( √2):2 В1К ⊥ А1С, НК ⊥ А1С. Треугольник В1НК - прямоугольный. cos ∠ НВ1К=В1Н:В1К cos ∠НВ1К=(√2/2):√2/√3=√3/2, и это косинус угла 30º. Значит, угол В1КН, как второй острый угол прямоугольного треугольника, равен 90º-30º=60º
Отношение площадей трапеций S1/S2 =
(d*h)/(e*h) = d/е
Найдем средние линии трапеций.
По условию:
а: b = 7:11
отсюда:
а = b*7/11
Средняя линия исходной трапеции:
с = (а+b)/2 = (b*7/11 + b)/2 = b*9/11
Средние линии полученных трапеций:
d = (а+с) /2 = (b*7/11 + b*9/11)/2 = b*8/11
е = (с+b)/2 = (b*9/11 + b)/2 =b*10/11
Отношение площадей:
S1/S2 = d/е = (b*8/11)/(b*10/11) = (b*8*11)/(b*10*11) = 8/10 = 4/5 = 4:5
S1 : S2 = 4:5
Линейный угол двугранного угла - это угол, образованный двумя лучами, которые имеют общее начало, лежащее на ребре двугранного угла, и проведенными в обеих гранях перпендикулярно этому ребру.
Обе плоскости сечения содержат в себе диагональ куба А1С, которая является линией их пересечения.
Соотношение линейных величин у кубов одинаковы.
Пусть данный куб единичный, где его ребро равно 1.
Тогда его диагональ А1С по формуле диагонали куба равна √3, а диагональ его грани равна √2.
А1С=√3 А1В=√2
Искомый угол ∠В1КН, где В1К - высота треугольник аА1В1С.
В1Н - перпендикуляр из В1 на плоскость А1СВ, в частности, В1Н перпендикулярен А1В.
Из треугольник аА1В1С найдем В1К.
Треугольники А1В1С и КВ1С подобны.
А1В1:В1К=А1С:В1С
1/В1К=√3/√2
Грани куба - равные квадраты.
Диагонали квадрата перпендикулярны и точкой пересечения делятся пополам.
В1Н ⊥ А1В, ⇒ является половиной диагонали грани куба и равна ( √2):2
В1К ⊥ А1С, НК ⊥ А1С.
Треугольник В1НК - прямоугольный.
cos ∠ НВ1К=В1Н:В1К
cos ∠НВ1К=(√2/2):√2/√3=√3/2, и это косинус угла 30º.
Значит, угол В1КН, как второй острый угол прямоугольного треугольника, равен 90º-30º=60º