Возьмите три произвольных отрезка. Постройте четы- рёхугольник ABCD, в котором углы при вершинах А и В прямые, а стороны DA, AB и ВС равны заданным отрез- кам. Всегда ли такой четырёхугольник существует? Сколько существует таких четырёхугольников?
Диагонали ромба ABCD пересекаются в точке О. Найдите углы треугольника AOB если угол BCD равен 70 градусов
ответ или решение1
Петухова Виктория
Дано:
ромб ABCD,
АС и ВD — диагонали,
АС пересекается с ВD в точке О,
угол BCD = 70 градусов.
Найти градусные меры углов треугольника АОВ, то есть угол АОВ, угол ОВА, угол ВАО — ?
Рассмотрим ромб АВСD. По признаку диагонали ромба пересекаются под прямым углом. Тогда треугольник АОВ является прямоугольным. По свойству ромба, диагонали делят углы ромба пополам. Зная, что сумма градусных мер углов ромба равна 360 градусам. Получим:
угол В = углу D = 360 - (угол А + угол С) : 2 = 360 - (70 + 70) = 360 - 140 = 110 градусов.
Найти расстояние между прямыми L1 и L2
L1: 4x-3y-12=0.
L2: 4x-3y+20=0.
Решение.
Прямая L1 имеет свободный член C1=-12 и направляющий вектор
n1={-В1, А1}={3; 4}.
Прямая L2 имеет свободный член C2=20 и направляющий вектор
n2={-В2, А2}={3; 4}.
Так как нормальные векторы прямых L1 и L2 совпадают, то расстояние между ними можно вычислить формулой:
d = | C 1 − C 2 | / √(A ² + B²). (1)
Подставим значения A1, B1, C1, C2 в (1):
d = | − 12 − 20 | / (√ ( 4 ² +(-3) ²) = 35/5 = 6,4
Расстояние между прямыми равно d=6,4.
Диагонали ромба ABCD пересекаются в точке О. Найдите углы треугольника AOB если угол BCD равен 70 градусов
ответ или решение1
Петухова Виктория
Дано:
ромб ABCD,
АС и ВD — диагонали,
АС пересекается с ВD в точке О,
угол BCD = 70 градусов.
Найти градусные меры углов треугольника АОВ, то есть угол АОВ, угол ОВА, угол ВАО — ?
Рассмотрим ромб АВСD. По признаку диагонали ромба пересекаются под прямым углом. Тогда треугольник АОВ является прямоугольным. По свойству ромба, диагонали делят углы ромба пополам. Зная, что сумма градусных мер углов ромба равна 360 градусам. Получим:
угол В = углу D = 360 - (угол А + угол С) : 2 = 360 - (70 + 70) = 360 - 140 = 110 градусов.
Тогда
угол АВО = 110 : 2 = 55 (градусов);
углу ВАО = 70 : 2 = 35 градусов.
ответ: 90 градусов; 55 градусов; 35 градусов.
Объяснение:
Вот