P - точка пересечения биссектрис. Биссектриса внутреннего угла при параллельных отсекает равнобедренный треугольник.
AB=BP=PC=CD=3, BC=6
Опустим высоту BH на AD.
AH=(AD-BC)/2 =(8-6)/2 =1
BH=√(AB^2-AH^2) =√(9-1) =2√2
Точка M равноудалена от прямых AB, BC, CD, следовательно лежит на биссектрисах углов ABC и BCD. Эти биссектрисы делят равные углы пополам и образуют равнобедренный треугольник. MP - серединный перпендикуляр к BC.
В равнобедренном треугольнике ABP биссектриса BM является серединным перпендикуляром к AP. AM=PM, △BAM=△BPM по трем сторонам, ∠BAM=∠BPM=90.
P - точка пересечения биссектрис. Биссектриса внутреннего угла при параллельных отсекает равнобедренный треугольник.
AB=BP=PC=CD=3, BC=6
Опустим высоту BH на AD.
AH=(AD-BC)/2 =(8-6)/2 =1
BH=√(AB^2-AH^2) =√(9-1) =2√2
Точка M равноудалена от прямых AB, BC, CD, следовательно лежит на биссектрисах углов ABC и BCD. Эти биссектрисы делят равные углы пополам и образуют равнобедренный треугольник. MP - серединный перпендикуляр к BC.
В равнобедренном треугольнике ABP биссектриса BM является серединным перпендикуляром к AP. AM=PM, △BAM=△BPM по трем сторонам, ∠BAM=∠BPM=90.
MP пересекает AD в точке N.
∠MAN=90-∠BAD=∠ABH, △MAN~△ABH
MN/AH=AN/BH => MN=4/2√2 =√2
Можно найти только УГЛЫ треугольника АВС.
Решение на всякий случай.
Биссектриса BD в ABC пересекает сторону AC под углом 100°, тогда если <ADB =100°, то <CDB = 80°, как смежный с ним.
В треугольнике DBC BD=BC (дано) => углы <BDC = CDВ = 80° как углы при основании равнобедренного треугольника.
<DBC = 180° - 2*80° = 20° по сумме внутренних углов треугольника.
А так как BD - биссектриса, то угол В = 40°.
<A = 180° - 80° - 40° = 60° (по сумме внутренних углов треугольника).
ответ: <A=60°, <B=40° и <C=80°.