Для решения задач необходимы рисунки. Сделаем их. 1) Решение полностью понятно при рассмотрении рисунка. Треугольник с тупым углом при вершине, потому высота к боковой стороне пересекается с ее продолжением. Угол, смежный с углом 130 градусов, равен 50 градусам. Второй угол прямоугольного треугольника=40 градусов. ответ: угол, который образует высота, проведённая к боковой стороне с другой боковой стороной, равен 40 градусов. ---------------------- 2) Так как острый угол этого равнобедренного треугольника равен 15°, угол при вершине В=180°-15°*2=150°. Острый угол, образованный при проведении перпендикуляра к прямой АВ и смежный с углом при вершине треугольника, равен 180°-150°=30°. Отрезок h, равный расстоянию от С до АВ, противолежит углу 30° и потому равен половине гипотенузы образовавшегося прямоугольного треугольника. h=8:2=4
Пусть О - центр окружности, описанной около ΔАВС. Рассмотрим ΔАОВ: ОА=ОС=r, значит ΔАОВ -равнобедренный (впоследствии он окажется и равносторонним, но это при решении данной задачи значения не имеет). Точка Н- середина стороны АВ, через неё проведён серединный перпендикуляр ОН, который является медианой, биссектрисой и высотой. Так как Н- середина стороны АВ, то АН=НВ=120. ∠АСВ=30° является вписанным углом, опирающимся на дугу АВ, значит градусная мера дуги АВ=60° ∠АОВ при этом является центральным углом, опирающимся на дугу АВ, значит ∠АОВ=60° Рассмотрим Δ ОНВ: он прямоугольный, т.к. ОН⊥АВ; ∠НОВ=30°, т.к. ОН является и биссектрисой; а НВ=120 это катет, лежащий против угла в 30°. Значит
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
Для решения задач необходимы рисунки. Сделаем их.
1)
Решение полностью понятно при рассмотрении рисунка.
Треугольник с тупым углом при вершине, потому высота к боковой стороне пересекается с ее продолжением. Угол, смежный с углом 130 градусов, равен 50 градусам. Второй угол прямоугольного треугольника=40 градусов.
ответ:
угол, который образует высота, проведённая к боковой стороне с другой боковой стороной, равен 40 градусов.
----------------------
2)
Так как острый угол этого равнобедренного треугольника равен 15°, угол при вершине В=180°-15°*2=150°.
Острый угол, образованный при проведении перпендикуляра к прямой АВ и смежный с углом при вершине треугольника, равен 180°-150°=30°.
Отрезок h, равный расстоянию от С до АВ, противолежит углу 30° и потому равен половине гипотенузы образовавшегося прямоугольного треугольника.
h=8:2=4
Рассмотрим ΔАОВ:
ОА=ОС=r, значит ΔАОВ -равнобедренный (впоследствии он окажется и равносторонним, но это при решении данной задачи значения не имеет). Точка Н- середина стороны АВ, через неё проведён серединный перпендикуляр ОН, который является медианой, биссектрисой и высотой.
Так как Н- середина стороны АВ, то АН=НВ=120.
∠АСВ=30° является вписанным углом, опирающимся на дугу АВ, значит градусная мера дуги АВ=60°
∠АОВ при этом является центральным углом, опирающимся на дугу АВ, значит ∠АОВ=60°
Рассмотрим Δ ОНВ: он прямоугольный, т.к. ОН⊥АВ; ∠НОВ=30°, т.к. ОН является и биссектрисой; а НВ=120 это катет, лежащий против угла в 30°.
Значит
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)