Впараллелограмме abcd высота, опущенная из вершины b пересекает большую диагональ в точке o. bo=кв.корень из 96. косинус угла между этой диагональю и верхним основанием равен 5: 7. найти длину боковой стороны, если периметр параллелограмма равен 54.
Основание пирамиды - правильный треугольник. Следовательно, радиус описанной около него окружности (ОС) равен удвоенному радиусу вписанной окружности R=2*r = 6. А высота основания СН = 9. Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды. Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO. Рассмотрим прямоугольный треугольник ОCQ. В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности). Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)². Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5. Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150. ответ: Vш ≈ 1150.
В равнобедренном треугольнике один из углов 120 градусов.Основание биссектрисы данного угла удалено от одной из сторон треугольника на расстояние 12 см.Найдите основание равнобедренного треугольника.120 пополам - 60градусов(т.к провели биссектрису) углы при основании равны 30 градусам(180-120 и пополам) после провели расстояние от основания биссектрисы, тоесть перпендикуляр, получился прямоугольный треугольник с одним из углов при основании, это расстояние лежит против угла в 30 градусов, а значит равно половине гипотенузы(гипотенуза равна 24). Далее в равнобедренном треугольнике биссектриса является и высотой и медианой, значит основание делется на два равных отрезка, один из этих отрезков - наша гипотенуза, основание равно 12 на 2 = 24см
R=2*r = 6. А высота основания СН = 9.
Высота пирамиды равна 4, а высота основания =9. Следовательно, центр описанного шара лежит ниже плоскости основания пирамиды.
Центр шара Q лежит на линии высоты пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды SC, а высотой – высота пирамиды SO.
Рассмотрим прямоугольный треугольник ОCQ.
В нем ОQ=Rш-H=Rш-4 (Н - высота пирамиды ,Rш - радиус шара), ОС=R=6 (радиус описанной около основания окружности).
Тогда по Пифагору QC²=ОС²+OQ² или Rш²=R²+(Rш-H)².
Раскрываем скобки: Rш²=R²+Rш²-2*Rш*Н+H² или
Rш=(R²+H²)/2Н. В нашем случае Rш=(36+16)/2*4 = 6,5.
Объем шара V=(4/3)*π*R³ =(4/3)*3,14*274,625 + 3449,29/3 ≈1149,76 ≈ 1150.
ответ: Vш ≈ 1150.
углы при основании равны 30 градусам(180-120 и пополам)
после провели расстояние от основания биссектрисы, тоесть перпендикуляр, получился прямоугольный треугольник с одним из углов при основании, это расстояние лежит против угла в 30 градусов, а значит равно половине гипотенузы(гипотенуза равна 24).
Далее в равнобедренном треугольнике биссектриса является и высотой и медианой,
значит основание делется на два равных отрезка, один из этих отрезков - наша гипотенуза, основание равно 12 на 2 = 24см