Проведем диаметр и обозначим его AC . Проведем хорду и обозначим её BN. Точку пересечения хорды с диаметром обозначим буквой O.Соединим точку В хорды с концами диаметра А и В. У нас получилось два прямоугольных треугольника. AOB. и BOC. Примем отрезок АО =9см, а отрезок ОС=x. Тогда АС =9+x(это диаметр). Из треугольника АВС находим. ВС^2=АС^2-АВ^2: Из треугольника. ВОС ВС^2=ОВ^2+ОС^2 : Левые части равны значит АС^2 -АВ^2=ОВ^2+ОС^2. Подставляя значения получаем: (9+x)^2-(9^2+12^2)=12^2+x^2; 81+18x+x^2- 81 -144=144+x^2: 18x=288, x=16. AC =9+16=25. Радиус равняется АС/2=25/2 =12,5(см) ответ:12,5.
дано: решение
c = 17 (см) p = a + b + c
a = x пусть катет a = x, тогда катет b = x - 7
b = x - 7 так как треугольник прямоугольный, то
x мы найдем по теореме пифагора:
p - ? c² = x² + (x - 7)²
17² = x² + x² - 14x + 49
2x² - 14x + 49 - 289 = 0
2x² - 14x - 240 = 0
d₁ = 7² - 2 * (-240) = 49 - (-480) = 529
d₁ > 0, уравнение имеет 2 корня.
x₁ = -(-7) + √529 / 2 = 7 + 23 / 2 = 30 / 2 = 15
x₂ = -(-7) - √529 / 2 = 7 - 23 / 2 = -16 / 2 = -8
второй корень уравнение не подойдет, т.к он имеет отрицательное значение, а длина не может быть отрицательным числом, значит x = 15.
a = 15
b = 15 - 7 = 8
p = 17 + 15 + 8 = 40 (см)
ответ: p = 40 (см)